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> In joint work with Joachim Kock (UAB Barcelona & U Copenhagen) [1], we provided a formalization of the concept
of tracelet Hopf algebras utilizing the at the time (very) recent developments of decomposition spaces in

combinatorics [2] and free decomposition spaces [3].
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v

In joint work with Joachim Kock (UAB Barcelona & U Copenhagen) [1], we provided a formalization of the concept
of tracelet Hopf algebras utilizing the at the time (very) recent developments of decomposition spaces in
combinatorics [2] and free decomposition spaces [3].

v

In a long series of works by I. Galvez-Carrillo, J. Kock, and A. Tonks (c.f. [2] and references theroein),
decomposition spaces have been demonstrated to provide a fundamental principle for reasoning in objective
combinatorics fashion, especially about algebraic structures such as incidence (co-/bi-)algerbas.

v

Slogan: “Decomposition is often easier than composition” — decomposition spaces are capable in particular of
modeling generalizations of associative composition operations!
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Aside: 2-Segal spaces = decomposition spaces (but not much more on the former in this talk — see the excellent
recent review article [4] though!)
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Overview

> Important conceptional observation: originally, incidence coalgebras were constructed for 1-Segal spaces (e.g., for
posets); but it is easy to find combinatorial structures that naturally give rise to incidence coalgebras, but are only
2-Segal spaces!

> The simplest way to define 2-Segal spaces is as a presheaf S: °P — Grp that takes active-inert pushouts to
pullbacks (more details later in this talk).

> Interesting technical point: in all of the decomposition space framework, algebraic structures are considered with
groupoid coefficients. Concretely, homotopy slices of groupoids Grpd/ X, will provide the basis for the algebraic
constructions (with X; playing the role of the combinatorial structure in question).

> Slogan ([2], Sec. 1.2):
incidence coalgebra of X, := comonoid object in the symmetric monoidal 2-category LIN

Important technical ingredient here: LIN — symmetric monoidal 2-category of groupoid slices and linear
functors ([2], App. A.3). Globally, this relies upon homotopy theory of groupoids

> Conceptually, the decomposition space axioms precisely guarantee incidence coalgrba coassociativity abd
counitality.
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The simplex category (“topologists’ Delta”)

Definition ([2], Appendix B.1)
The simplex category has
> finite non-empty standard ordinals [n] = {0 <1 <... <n} as objects,

> monotone (i.e., order-preserving) maps as morphisms.

> The morphisms of are generated by the following classes of maps:

» coface maps — injections 0':[n—1]— [n] that skip the value i;
» codegeneracy maps — surjections o' : [n+ 1] — [n] that repeat the value i.

> These generators satisfy some obvious relations (called cosimplicial identities).
o' —ar——>

— 7
(0] <o — 1] =457, = [2]
T 7 el
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Generating maps for and active/inert maps

2 [+ 1] —= 5 [ [m) ———— [n] . \ %o
/ ’ K \ o . \ )
“ . . “ o “ \ *
— ., .Z>¢., o ; ‘.
. . “w—
b
=3
‘ - e . _ i1
8
UE injections surjections active maps maps
5 a(0)=0Aa(m)=n
&
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Active-inert factorization system on ([3], Sec. 1.1.1)

> The simplex category has an active-inert factorization system, i.e., every map of factors uniquely as an active
map followed by an inert map, with

» active maps — g : [k] —| [m] such that g(0) =0 and g(k) = m (“endpoint-preserving”)
% inert maps — f:[m]— [n] such that f(i+1) = f(i) +1 for 0 <i <m—1 (“distance-preserving”)

> In terms of generating maps of , one finds that all generators are active maps, except for the outer coface maps,
which are inert maps:

a! E(#ﬁ
[0] ¥— o0 — [1] palzn—j' [2]
d° ———>

> Restriction of  to inert maps (= blue arrows in the above diagram) defines a subcategory ;..
Jt inere — (which will play a crucial réle in the construction of free decomposition spaces).

and an embedding
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Simplicial groupoids

> groupoid — small category in which all the arrows are invertible (heuristic interpretation: “sets with built-in
symmetries”); map of groupoids — a functor between groupoids

-~ category Grpd of groupoids and groupoid maps

> homotopy of groupoid maps — a natural transformation of groupoid functors
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Simplicial groupoids

> groupoid — small category in which all the arrows are invertible (heuristic interpretation: “sets with built-in
symmetries”); map of groupoids — a functor between groupoids

-~ category Grpd of groupoids and groupoid maps
> homotopy of groupoid maps — a natural transformation of groupoid functors

> simplicial groupoid — a functor of the form X : °? — Grpd, with the simplex category of non-empty finite
standard ordinals [n] ={0 <1 < ... <n} and monotone maps.
> Via the generators-and-relations description of , the previous yields (keeping in mind the op-ing) a diagram as

below, where active maps (“end-point-preserving” maps) are denoted as —|, and inert maps (“distance-preserving”
maps) are denoted as —:

o — %dsHszﬁ

cd— s1 < d——
XO oﬁiX (— 1 X2 11— X3

< dg—— P S0 ﬁ Fdl———soﬁ

< dg—

A face map d; (a degeneracy map s;) deletes (repeats) the i-th vertex, and the generators satisfy the relations

dis;=d;15=1, didj=dj71di, d}-+lsi=sid}-, ds ,1d 88 = 5:8;_1 (i<p.
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Example: nerve of a category

> X, — objects of the category
> X, — morphisms of the category
> X,., — length n sequences of composable morphisms (and their composites)

id, \
\
dll y id,of x
Xy % Xo
face maps d;: X, — X; degeneracy maps s, : X; — X,
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Decomposition spaces [5]
Definition
A simplicial groupoid X, : °? — Grpd is a decomposition space if it maps active-inert pushouts to pullbacks.

[n'] <— [n] Xy r— X,
x| 1 T1-1 |
[m'] << [m] X — X,

Definition (Equivalent form)

A simplicial groupoid X, : °° — Grpd is a decomposition space if the following commutative squares are all homotopy
pullbacks (for alln >1 and 0 <i<n):

X, —my X Xy —2 X
n+1 n n+1 n

di\l/ J/di di+ll J/di
Xn d, ? Xn—l Xn dy 7 Xn—l

Example: For n = 2, the equations imply that a 3-simplex can be reconstructed (up to homotopy equivalences) by gluing
two 2-simplices along a 1-simplex (i.e., the long edge of one along a short edge of the other).

5 1. Gélvez-Carrillo, J. Kock, and A. Tonks. “Decomposition Spaces, Incidence Algebras and Mobius Inversion I: Basic Theory”. In: Advances in Mathematics 331 (June 2018), pp. 952-1015. por:

10.1016/j.aim.2018.03.016. 9/33


https://doi.org/10.1016/j.aim.2018.03.016

Decomposition space example

Schmitt’s Hopf algebra of graphs [2]
> Let X be the simplicial groupoid with X, the d
groupoid of directed multi-graphs with an -~
ordered k-part vertex-induced partition (with
parts possibly empty, and X, the 1-element
groupoid containing only the empty graph). S S

2
[
doI Ido

Xo X3
c X, € Xo
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Decomposition space example

Schmitt’s Hopf algebra of graphs [2]
> Let X be the simplicial groupoid with X, the d
groupoid of directed multi-graphs with an -~
ordered k-part vertex-induced partition (with
parts possibly empty, and X, the 1-element
groupoid containing only the empty graph). S S

2
L
J

Xo X3
c X, € Xo

> The decomposition space axiom is given by the
pullback diagram on the right: d
» horizontal maps join the last two layers 0
» vertical maps forget the first layer
» the diagram expresses the fact that the triple
partition (top right) can be reconstructed by the
information contained in the cospan
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Decomposition space example

Schmitt’s Hopf algebra of graphs [2]
> Let X be the simplicial groupoid with X, the ds

groupoid of directed multi-graphs with an -~

ordered k-part vertex-induced partition (with

parts possibly empty, and X, the 1-element

groupoid containing only the empty graph). S L S
» vertical maps forget the first layer
» the diagram expresses the fact that the triple

X, X;
> The decomposition space axiom is given by the
partition (top right) can be reconstructed by the
information contained in the cospan
> This is not an example of a 1-Segal space, since a
graph with a two-part partition cannot be dq
reconstructed from knowing only the two parts
(cf. [2], Sec. 1.1.5)
€ X, € Xo

pullback diagram on the right: dUI

» horizontal maps join the last two layers
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CULF functors and the category of decomposition spaces

Definition (CULF functors, [2], Sec. 1.5.1)

A simplicial map F : Y — X is CULF (“conservative and having unique lifting of factorizations”) if it is Cartesian on active
maps.

> If X is a decomposition space and F : Y — X a CULF map, then Y is a decomposition space, too.
> This motivates to define the co-category Decomp of decomposition spaces and CULF maps.
> Crucially, the incidence coalgebra constructions are (covariantly) functorial in CULF maps.
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CULF functors and the category of decomposition spaces

Definition (CULF functors, [2], Sec. 1.5.1)

A simplicial map F : Y — X is CULF (“conservative and having unique lifting of factorizations”) if it is Cartesian on active
maps.

> If X is a decomposition space and F : Y — X a CULF map, then Y is a decomposition space, too.
> This motivates to define the co-category Decomp of decomposition spaces and CULF maps.
> Crucially, the incidence coalgebra constructions are (covariantly) functorial in CULF maps.

For the special case of decomposition spaces of the form S: °P — Set (but conjectured also to be true for generic
decomposition spaces), one has the following result:

Theorem ([3], Thm. 4.5)

For every decomposition space 2 : °P — Set, there exists an equivalence of categories
Decomp/,, ~Psh(tw,),

where tw,, denoted the twisted arrow category of 2.

= This opens up the possibility to use techniques from topos theory to study decomposition space constructions:
defining new decomposition spaces from old (using the internal language of topoi), investigating notions such as
subobject classifiers in the combinatorial setting, ...

11/33
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Motivation

> Key conceptual point: most interesting examples suffer from/feature some form of algebraic structure on
isomorphism classes of combinatorial objects; the decomposition space framework thus aims to formulate
algebraic structures in a “representative-independent” fashion

> Another interesting technical point concerns objective combinatorics vs. “concrete” combinatorics: many results at
the objective level are available without any finiteness constraints (i.e., in the form of bijective proofs), but in
order to recover results from traditional combinatorics, one requires notions of finiteness of the underlying groupoids
and compatible notions of cardinalities

> There are very subtle issues regarding finiteness notions. For instance, there is a variant of the numerical
convolution algebra which only works for finite categories; albeit this seems to be a rather strong restriction, these
cases are very important in practice (as, for instance, they cover the Hall algebras as numerical convolution
algebras for the Waldhausen S, construction; in that case, one needs homological finiteness conditions, i.e., that
Ext® and Ext! are finite).
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Slices of simplicial groupoids and fundamental equivalence; [2], App. A.2

Definition

For every groupoid B € Grpd, let Grpd/, denote the homotopy slice category over B, with objects groupoid maps
f:X — B, and morphisms triangles such as below, where a : ff' oh is a homotopy equivalence (i.e., a natural
isomorphism):

X —"r 5 x

N

Note: For 1 the terminal groupoid, we have that Grpd/, ~ Grpd.

Theorem (Fundamental equivalence; [2], Thm. A.2.3)

For a fixed groupoid B € Grpd, there exists a canonical equivalence
Grpd/, ~ Grpd®
between the homotopy slice category Grpd/, of groupoids over B, and the category Grpd® of B-indexed families of

groupoids. This equivalence is given by taking homotopy fibers and via the Grothendieck construction.

13/33



£
o)
[
2
|
@
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Linear functors (I); [2], App. A.3

For every map of groupoids f : B' — B, letting f*: Grpd/ — Grpd/g, denote the functor defined by taking homotopy
pullback along f, and f, : Grpd/, — Grpd/, the functor defined by postcomposition with f, one obtains the following
homotopy adjunction:

1) > A A' > fi(A)
fi
) T \
f4@) g Grpd/g L Grpd/p, g f1(8":=fog'
\ f*
B’ f) B B —f> B
Lemma (Beck-Chevalley)
For any homotopy pullback square as below,
H—2 > F

the functors p,q*,g*f, : Grpd/; — Grpd/ are naturally homotopy equivalent.

14/33



Linear functors (II); [2], App. A.3

Definition
Any span A < GL Bof groupoid maps yields a functor

fir*:Grpd/, — Grpd/;.

v

A functor homotopy equivalent to one arising from a span is called linear.

v

By the Beck-Chevalley lemma, compositions of linear functors are linear.

v

Let LIN denote the monoidal 2-category of all slice categories Grpd/, and linear functors between them, and with
monoidal product defined as
Grpd/, ® Grpd/g := Grpd/ 5.

v

The neutral object for ® is Grpd/,; ~ Grpd (= ground field in homotopy linear algebra).
Grpd?® is the linear dual of Grpd/, since Grpd® ~ LIN(Grpd/ , Grpd).
There exists a canonical pairing Grpd/, x Grpd® — Grpd:

v v

Q. (B ~t t?' :1->B:1—t€B
s(B) (s=0) with:

(LR =Homg,q(s,0) = {@ (szt) h*  :=Homg,,4(s,—):B— Grpd

Here, QO (B) is the loop groupoid of B at object s, given by homotopy pullback of "s™: 1 — B along itself.
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Finiteness notions for groupoids

Definition (Connectedness and discreteness)

> A groupoid G is connected if obj(G) is non-empty and Hom(x, y) is non-empty for all y,z € G.

> A component G is a maximally connected sub-groipoid, denoted [x] or G, for x in the component.
> 7,(G) is defined as the set of components of G.

> m,(G,x) := Aut;(x) = Homg(x,x) (automorphism group of x).

> A groupoid G is homotopy discrete if , (G, x) is trivial for all x, and contractible (i.e., homotopy equivalent to the
terminal groupoid 1) if it is connected and homotopy discrete.

Definition (Finiteness)
> A groupoid G is locally finite if 7, (G, x) for every x.
> It is (homotopy) finite if in addition ,(G) is finite.
> We denote by grpd the category of finite groupoids.
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Cardinality of groupoids; [2], App. A.4

> The cardinality |B| of a finite groupoid B is defined as

1 1

IB| := — - — ¢
mene | T B X genm [Autg(x)]

Q

> For any function q : m,(B) — Q, we introduce the notation

xEB q(x)
/ W= Y Bl

[x]1€my(B)
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Cardinality of finite linear functors; [2], App. A.4

Lemma ([2], Prop. A.1.3)

Any span A< G £ of locally finite groupoids A, G, B, and where r has finite homotopy fibers induces a finite linear
functor Grpd/, — Grpd/ that extends to grpd/, — grpd/.

> Let lin be denote the category of slice categories grpd/, (for A finite) and finite lienar functors.
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Decomposition Spaces in Combi;

Cardinality of finite linear functors; [2], App. A.4

Lemma ([2], Prop. A.1.3)

Any span A< G £ of locally finite groupoids A, G, B, and where r has finite homotopy fibers induces a finite linear
functor Grpd/, — Grpd/ that extends to grpd/, — grpd/.

> Let lin be denote the category of slice categories grpd/, (for A finite) and finite lienar functors.
> global cardinality || || : lin — Vect is defined via

ligrpd/ Il :=Q, 4y with Dasis {SQ}QEHO(A)

beB
l1grpd/ , — 8P/ pll = Quya) = Quyem) * 8a= ) 1Byl 1Ggp18, = / |Gy 15,
[blemy(B)

Here, G, ,, are the fibers of the map G — A X B induced by the span A — G — B.

18/33



Cardinality of finite linear functors; [2], App. A.4

Lemma ([2], Prop. A.1.3)
Any span A< G £ of locally finite groupoids A, G, B, and where r has finite homotopy fibers induces a finite linear
functor Grpd/, — Grpd/ that extends to grpd/, — grpd/.

> Let lin be denote the category of slice categories grpd/, (for A finite) and finite lienar functors.

> global cardinality || || : lin — Vect is defined via

ligrpd/ Il :=Q, 4y with Dasis {SQ}QEHO(A)

beB
Igrpd/ , — 81/l = Q= Q) 8 Y. 1By 16,18, = [ 16,415,
[blemy(B)
Here, G, ,, are the fibers of the map G — A X B induced by the span A — G — B.
> For any object p : G — B in grpd/,, one may define the local cardinality |p| of p as the global cardinality of the
linear finite functor L(p) induced by the span 1 — G LB
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beB
Ipl = IIL(p)II=/ G, 18,

> These notions may also be dualized to cardinalities for grpd® (cf. [2], A.4.5), requiring the notion of
profinite-dimensional vector spaces.

Decomposition Spaces in Combi;
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Incidence coalgebras [2]

> Taking homotopy pullback along a groupoid morphism f : B’ — B yields a functor
f*:Grpd z — Grpd,p,
> f* has a homotopy left adjoint f, defined by postcomposition,

f:Grpd p — Grpd

> A span of groupoid maps A Rl ER B thus induces a functor (referred to as linear)

fir*:Grpd,, — Grpd,

Definition
For a decomposition space X, the incidence coalgebra (Grpd 1x,0,€) is defined via

d (dy,dg)
x, & x, L9 x «x, X, 2 x, 51
A:=(d,,dy), o df €:=(sp), 02"
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Incidence coalgebras [2]

> This construction is intended to generalize the incidence coalgebra of posets, with the idea that (for f € X;)

A= ) dy(o)@dy(o)
oEX,

dy(0)=f

computes all ways how f € X, can arise as the “long edge” of some 2-simplices o.
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Incidence coalgebras [2]

> This construction is intended to generalize the incidence coalgebra of posets, with the idea that (for f € X;)

A= ) dy(o)@dy(o)
oEX,

dy(0)=f

computes all ways how f € X, can arise as the “long edge” of some 2-simplices o.
> More precisely, for a basis element "t": 1 — X, of Grpd e (i.e., a functor that picks out a particular element t € X,),
(a,b)eX; xX;
ACE) = (dy,dy), o dE () = / (Xy), "a @ b € Grpd,, ©Grpd,,
where (X2)ta,b denotes the homotopy fiber of (d;,d,,d,) : X, — X; X X; X X, over (t,a,b).

> Compare: in Schmitt’s construction, for a directed multigraph G with vertex set V;, and with G| X the restriction of
G to vertex set X < V;, denoting in a slight abuse of notations by G also the isomorphism class of G, we find

AG):== ). GlAeGIB
A+B=Vg

20/33



=
5
M
z
g
8
£
=]
g
E
3
o
51
g
2
2
&
S
3
(=
8
g
3
a

Coassociativity via decomposition space axioms

> Originally, incidence coalgebras were constructed for 1-Segal space; but it is easy to find combinatorial structures
that naturally give rise to incidence coalgebras, but are only 2-Segal spaces

> Reacap: a 2-Segal spaces is a functor S: °P — Grp that takes active-inert pushouts to pullbacks.

> Parsing out the previous definition in detail, one may demonstrate [5] that one only needs to verify that the following
squares are pullbacks (for alln =0 and 0 <k <n):

St dic+2 Sk e
Xn+1 Xn+2 Xn'?) Xn+1 Xn+2 Xm.“,
: | : |
dy d; d, dr dr dr
Xn Sk Xn+1 disr XHAZ n Sk Xn+1 disr Xn+2

21/33



From objective to numerical coalgebras; [2], Sec. 1.2.8 & [5], Sec. 7

Conceptual challenge

The notions of decomposition spaces and incidence coalgebras are inherently objective, in the sense that they deal
directly with combinatorial objects rather than with vector spaces spanned by these objects and (co-)algebraic
structures thereon. In particular, while the theory at the objective level is well-posed without finiteness conditions, to
recover numerical results in “classical” combinatorics, one must require suitable finiteness conditions in order to apply
cardinality constructions to the objective theory.
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From objective to numerical coalgebras; [2], Sec. 1.2.8 & [5], Sec. 7

Conceptual challenge

The notions of decomposition spaces and incidence coalgebras are inherently objective, in the sense that they deal
directly with combinatorial objects rather than with vector spaces spanned by these objects and (co-)algebraic
structures thereon. In particular, while the theory at the objective level is well-posed without finiteness conditions, to
recover numerical results in “classical” combinatorics, one must require suitable finiteness conditions in order to apply
cardinality constructions to the objective theory.

> A decomposition space X, : °? — Grpd is locally finite if X is a locally finite groupoid (i.e., 7, (X,x) = Auty(x) is

d
finite for all x), and if in addition the maps X, 2, X, < X, are (homotopy) finite (i.e., have finitie homotopy fibers).

> For a locally finite decomposition space X,, the comultiplication and counit maps are finite linear functors, and
thus descend to slices of finite groupoids:

A:grpd/y — grpd/y ®grpd/y , ¢:grpd/y — grpd
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From objective to numerical coalgebras; [2], Sec. 1.2.8 & [5], Sec. 7

Conceptual challenge

The notions of decomposition spaces and incidence coalgebras are inherently objective, in the sense that they deal
directly with combinatorial objects rather than with vector spaces spanned by these objects and (co-)algebraic
structures thereon. In particular, while the theory at the objective level is well-posed without finiteness conditions, to
recover numerical results in “classical” combinatorics, one must require suitable finiteness conditions in order to apply
cardinality constructions to the objective theory.

> A decomposition space X, : °? — Grpd is locally finite if X is a locally finite groupoid (i.e., 7, (X,x) = Auty(x) is

d
finite for all x), and if in addition the maps X, 2, X, < X, are (homotopy) finite (i.e., have finitie homotopy fibers).

> For a locally finite decomposition space X,, the comultiplication and counit maps are finite linear functors, and
thus descend to slices of finite groupoids:

A:grpd/y — grpd/y ®grpd/y , ¢:grpd/y — grpd

= Taking cardinality yields comultiplication and counit maps on vector spaces
[A] :Q,[O(Xl) _’QHO(XI) ®Q7[0(X1)’ lel :Qﬂo(xl) -Q
which form the coassociative and counital numerical coalgebra I, = (Q”o(Xl)’ Al 1e]).
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Examples of objective and numerical coalgebras in combinatorics

g-combinatorics ([2], Sec. 2.3)
Faa di Bruno algebra ([2], Sec. 2.4)
“Operadic” examples (graphs, trees, ...) ([2], Sec. 2.5)

v VvV Vv v

current research topic: objective combinatorics for symmetric functions ([2], Sec. 2.6)

> Free decomposition spaces ([2], Sec. 3.3.7) — many combinatorial coalgebras of deconcatenation type are
incidence coalgebras of free decomposition spaces!

> Possibly also of interest: link between Mébius inversion and renormalization [6]
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6 J. Kock. “From Mobius Inversion to Renormalisation”. In: Communications in Number Theory and Physics 14.1 (2020), pp. 171-198. por: 10.4310/CNTP.2020.v14.n1.a3. 23/33
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Incidence bialgabras via monoidal decomposition spaces; [2], Sec. 1.5.6

Recap: the appropriate notion of functors between decomposition spaces are CULF functors (cf. [2], Sec. 1.5)

Definition

A monoidal decomposition space is a decomposition space Z equipped with an associative unital monoid structure
given by CULF functors m:Z xXZ —Zande:1— Z.

Lemma
If Z is a monoidal decomposition space, then Grpd/ 7, carries the structure of a bialgebra, called incidence bialgebra.
Moreover, monoidal CULF functors induce bialgebra homomorphisms.

Example (Schmitt Hopf algebra of graphs)

Taking as a monoidal structure the one induced by taking disjoint union of graphs with partitions, one may verify that
this indeed yields a monoidal decomposition space (cf. [2], Sec. 1.5.10 for further details).
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Free decomposition spaces [3]

> The simplex category has an active-inert factorization system, i.e., every map of factors uniquely as an active
map followed by an inert map, with

» active maps — g : [k] —| [m] such that g(0) =0 and g(k) = m (“endpoint-preserving”)
» inert maps — f: [m] — [n] such that f(i+1) = f(i) + 1 for 0 <i <m—1 (“distance-preserving”)

> In terms of generating maps of , one finds that all generators are active maps, except for the outer coface maps,
which are inert maps:

9! Fﬁzﬁ
[0] &— o0 — [1] =0 5= [2]
a° r——

> Restriction of to inert maps (= blue arrows in the above diagram) defines a subcategory

J: inert

inere and an embedding

Corollary (Free decomposition spaces are Mobius; [3], Cor. 2.3.3)

Forany A: fr‘: orc — GIPd, the left Kan extension j,(A): °P — Grpd is a (Mébius) decomposition space, called the free

decomposition space associated to A.
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Long (!) list of examples of free decomposition spaces in combinatorics

Key insight:

Essentially all examples with monoidal structure of deconcatenation type are free decomposition spaces

Prototypical examples from [3]:

> Quasi-symmetric functions (Secs. 5.1.4, 5.2.3, 5.3.3)

> WQSym and FQSym (Sec. 5.1.5)

> Parking functions (Sec. 5.1.6)

> Noncrossing partitions (Sec. 5.2.1)

> Dyck paths (Sec. 5.2.2; cf. also next slide)

> Layered posets (Sec. 5.2.3)

> Heap orders, scheduling, and sequential processes (Sec. 5.2.4)
>

Decomposition space of nondegenerate simplices (Sec. 5.3.2) — plays a crucial réle in the construction of tracelet
decomposition spaces [1] (cf. last part of the talk!)
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Free decomposition space example: Dyck paths [3], Sec. 5.2.2

> Dyck path — integer lattice path from (0,0) to (2¢,0) (for some ¢ € N) taking only steps /= (1,1) and \ = (1,—-1)
> height of a Dyck path — maximal second coordinate of the Dyck path
> A, — set of Dyck paths of height n (for n = 0)
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Free decomposition space example: Dyck paths [3], Sec. 5.2.2

> Dyck path — integer lattice path from (0,0) to (2¢,0) (for some ¢ € N) taking only steps /= (1,1) and \ = (1,—-1)
> height of a Dyck path — maximal second coordinate of the Dyck path

> A, — set of Dyck paths of height n (for n = 0)

> top and bottom face maps d',d, : A,,, — A, — clip the top-most/bottom-most level of the Dyck paths:
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AR O
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Free decomposition space example: Dyck paths [3], Sec. 5.2.2

> Dyck path — integer lattice path from (0,0) to (2¢,0) (for some ¢ € N) taking only steps /= (1,1) and \ = (1,—-1)
> height of a Dyck path — maximal second coordinate of the Dyck path

> A, — set of Dyck paths of height n (for n = 0)

> top and bottom face maps d',d, : A,,, — A, — clip the top-most/bottom-most level of the Dyck paths:

PR o
<
AL

dr

> The free decomposition space of Dyck paths X, :=j,(A,) has

» X, — set of all Dyck paths (i.e., all lengths and heights)
» X, — the set of all Dyck paths with k marked levels (without affecting the path)

In particular, the inner face map d, : X, — X, forgets the level marking, while the outer face maps d,,d, : X, — X,
(involved in the coproduct definition) act as follows:

do
—

<
dy
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Joint work with Joachim Kock

Joint work with Joachim Kock (UAB Barcelona and U
Copenhagen).

The project is based upon two main ingredients:
> Joachim’s long line of work on the theory of decomposition spaces (cf. e.g. [2,3,5])
> my notion of tracelet theory [7]

First results of our collaboration were presented in [1].
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7 N. Behr. “Tracelets and Tracelet Analysis of Compositional Rewriting Systems”. In: Proceedings of ACT 2019. Vol. 323. EPTCS. 2020, pp. 44-71. por: 10.4204/EPTCS.323.4. 28/33
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A sketch of “dynamic combinatorics”

*~—e

> Consider a rewriting system over (undirected multi-)
- graphs.

> Starting from some graph X,,, we may consider applying
A‘ KN
()

a sequence of rewriting operations (here: edge
deletions and creations).

Xo
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A sketch of “dynamic combinatorics”

*~—e

> Consider a rewriting system over (undirected multi-)
- graphs.
> Starting from some graph X,,, we may consider applying
a sequence of rewriting operations (here: edge
deletions and creations).

> The diagram on the left captures the causal structure in
such a sequence. The blue part is called a tracelet.
()

29/33
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A sketch of “dynamic combinatorics”

*~—e

Consider a rewriting system over (undirected multi-)
- graphs.
Starting from some graph X, we may consider applying
a sequence of rewriting operations (here: edge
deletions and creations).

> The diagram on the left captures the causal structure in
such a sequence. The blue part is called a tracelet.
Typical “dynamic combinatorics” questions:
° » # of ways to create a triangle in n steps?
» Dito up to sequential commutativity?
()

> # of ways n rewrite steps can interact?
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] i

x X *
(a) A rewriting sequence of length 5 (with edge creation/deletion rules, and where “wires” indicate matches).

|
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Xo

(b) (equivalence)Tracelet and shift equivalence example. (c) Defining property of tracelets (here of length 3).

Figure: An illustration of graph rewriting sequences (top) and of the tracelet picture (bottom).

Decomposition Spaces in Combinatorics
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Tracelet decomposition spaces [1]

Let X, : A°? — Grpd be a simplicial groupoid with X, trivial, and with

I O1o
4 2

Ko
3
Y ho
\ 2 oy Ko IO
0
0

1-simplices 2-simplices 3-simplices

rules rule compositions nested rule compositions
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Tracelet decomposition spaces [1]

Tos

From adjacent ...via the ...to 3-simplices...
2-simplices... concurrency theorem...
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Tracelet decomposition spaces [1]

Tos

— N.Behr

...to tracelets

...to 3-simplices...
concurrency theorem...

...via the
2-simplices...
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Tracelet decomposition spaces [1]

i

B N

Interpretation of the properties encoded in 3-simplices
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Tracelet decomposition spaces [1]

| =Y\
N

Interpretation of the properties encoded in 3-simplices
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Caveat:

In fact, the construction above presents for brevity merely the decomposition space of rewrite rules, which gives rise to a
categorification of the rule algebra. To obtain the actual tracelet decomposition space, one needs additional
refinements and constructions (essentially taking into account sequential commutativity and unitality), which amount to
taking a free decomposition space construction ([1].
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Conclusioon and outlook

> Decomposition space theory provides a (vast!) generalization of the notion of incidence (co-)algebras to most
known combinatorial structures.

> The framework is objective in nature — algebraic structures are defined utilizing the homotopy theory of groupoids
(with basis given by Grpd/ x, OF its linear dual Grpd™1, respectively.)

> Given suitable finiteness conditions, objective algebraic structures give rise to numerical algebraic structure by a
process of taking cardinalities
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Conclusioon and outlook

> Decomposition space theory provides a (vast!) generalization of the notion of incidence (co-)algebras to most
known combinatorial structures.

> The framework is objective in nature — algebraic structures are defined utilizing the homotopy theory of groupoids
(with basis given by Grpd/ x, OF its linear dual Grpd™1, respectively.)

> Given suitable finiteness conditions, objective algebraic structures give rise to numerical algebraic structure by a
process of taking cardinalities

> The framework yields a powerful organizational principle of combinatorial structures, permitting to compare
structures via inherently bijective correspondences.

> CULF maps of decomposition spaces are precisely the kind of functors that preserve coalgebraic structure, and as
such can serve as a construction principle for many combinatorially interesting examples of decomposition spaces.

> The co-category Decomp of decomposition spaces and CULF maps has the important technical property that its
slice categories Decomp/, (for 2 € obj(Decomp)) are toposses, which yields another versatile methodology for
constructing and comparing decomposition spaces.
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Recent trends in decomposition space theory: BANFF 2024 workshop

Banff International Research Station
for Mathematical Innovation and Discovery

. Home | About | Resources | Programs | Live Stream |

L i )
Videos | Services | Publications | Search | Contact

24w5266 Home
Confirmed Participants
Schedule

Workshop Videos

Final Report (PDF)

Testimonials

Higher Segal Sp and their Applications to
Algebraic K-Theory, Hall Algebras, and
Combinatorics (24w5266)

5-day workshop on 2-Segal (aka decomposition) spaces! — many talk recordings available, and with a conference

proceedings volume forthcoming!

1 https://www.birs.ca/events/2024/5-day-workshops/24w5266
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