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Concept

• TOPIC: continuous time Markov chains (CTMCs) for graph rewriting systems

• THE SPECIAL TWIST:
• link between non-deterministic transitions and associative unital algebras
• new insights into the combinatorics of graph rewriting, unification of the formalisms of physics and

mathematical combinatorics with the computer science formalism
• powerful new formulae for fragmentation!

• PLAN: short motivation/introduction about stochastic graph rewriting (aka a particular class of
CTMCs), then the new rule algebraic formalism
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Graph rewriting and Markov chain
theory



The basics of generic Markov chains

• Idea: consider a stochastic dynamical system
with
• a discrete state space (possibly 8 many

states though!)
• the memoryless property, whence the

transitions of the system can only depend on
information available in the current state of
the system (and not on the history of the state)

• transitions are discrete jumps from one
state to another – they happen
instantaneuously, though at random times

• Closer analysis reveals that the jump times
can then only be drawn from some
exponential jump time distribution (that
may be state-dependent)

ñ characterization of a continuous time
Markov chain!
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The Master equation and other niceties

• Standard CTMC theoryr1s: one way to
describe the dynamics is to give a probability
distribution

|Ψptqy :“
ÿ

SPS

pSptq|Sy

of being in one of the discrete states
(represented by basis vectors |Sy), and
specifying the Master equation (aka
Schrödinger equation)

d
dt
|Ψptqy “ H|Ψptqy ,

where H is the evolution operator.

• How precisely H is determined for a given
system is one of the main questions in
general!
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[1] James R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998
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The “stochastic mechanics” viewpoint

Benefits:
D a full-blown formalism aka “stochastic
mechanics”r2s for studying CTMCs:

• Observables O are linear operators under
which each pure state is an Eigenstate,

O|Sy “ ωOpSq|Sy .

• Expectation values of observables are
computed by introducing the dual projection
vector

x|Sy :“ 1 @S P S ,

such that for any state probability distribution
|Ψptqy

E|ΨptqypOq ” xOyptq :“ x|O|Ψptqy .

ñ evolution of expectation values of
observables via Master equation:

d
dt
xOyptq “ xOHyptq .

• Additional property of the evolution operator
H:

x|etH
|Ψptqy !

“ 1 ñ x|H “ 0 ,

i.e. H preserves normalizations.

ñ analogue of the Ehrenfest equation of
quantum mechanics:

d
dt
xOyptq “ xrO,Hsyptq ,

where rA,Bs :“ AB ´ BA is the commutator

[2] John C Baez and Jacob Biamonte. “A course on quantum techniques for stochastic mechanics”. In: s arXiv:1209.3632 (2012)
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Specializing to graph rewriting systems

Basics:

• State space: G– — isomorphism classes of
finite directed multi-graphs

• Discrete transitions: isomorphism classes
(!) of graph rewriting rules I

r
ùñ O, with

input graph I P G–, output graph O P G–,
and where r : I á O is an isomorphism
class of a partial injective morphism of
graphs

• Evolution operator H: to be dtermined!

Insight from statistical physics/chemistry:

• Promote the discrete state space to a vector
space (usually over R) S, with one basis
vector per possible discrete state.

• The transitions themselves should form an
associative unital algebra, implementing
the action of transitions on states via a (choice
of) representation of this algebra , where a
representation is an algebra
homomorphism from the algebra of
transitions T to the space of
endomorphisms EndpSq over the state
vector space S:

ρ : T Ñ EndpSq

such that

ρpt1 ˚ t2q “ ρpt1qρpt2q .
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The main objectives of this work

• Implement the full CTMC/ stochastic mechanics formalism for graph rewriting – this will
require in particular to find the state space, implementation of transitions via a transition
algebra, defining the evolution operator, and finally the construction of the canonical
representation of the transition algebra.

• Determine a description of the evolution of graph rewriting systems in this formalism.

• Study the potential benefits of this approach!
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Stochastic mechanics formalism



Step 1: Directed multigraphs and the graph state space

• A finite directed multigraph G ” pV ,E , s, tq is specified as a set of vertices V , a set of edges
E , and source and target maps s : E Ñ V andt : E Ñ V .

• The graph state space G is defined as the span of the set of isomorphism classes of
graphs G–,

G :“ spanRpG–q .
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Step 2: Normal rule diagrams

• A graph rewriting rule I
r
ñ O consists of an input graph I, an output graph O, and an

injective partial morphism r : I á O. We will always consider such rules up to isomorphism
(of I and O, and the induced effect on r ).

• Crucial idea: encode rules as normal rule diagrams – draw I at the bottom, O at the top and r
as dotted lines (with ˆ̈ ¨ ¨ to indicate which vertices and edges are not mapped)!

ˆ

‚1 ÝÑ
a
‚2 ÝÑ

b
‚3

r
á ‚21 ÝÑ

b1
‚31 ÐÝ

c1
‚41

˙

p“

1

21

2

31

3

41

a

b1

b

c1

An example of a rule and its associated normal rule diagram.
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Step 3: Generic rule diagrams and diagram composition

• The composition of rule diagrams may be
understood visually as “threading together”
normal rule diagrams along diagram
matches, linking output vertices of one
diagram to input vertices of another diagram,
and similarly for the edges, subject to some
consistency conditions:
• one-to-one – any output vertex or edge is

connected to at most one input vertex or edge
• acyclicity – viewed in total, the rule diagram

must not contain any cycles at all
• delayed edge morphism condition – if an

output edge is linked to an input edge of
another diagram, its endpoint vertices must be
linked, too, possibly via intermediate in-out
vertex mappings

• totality – see the paper!

Example for a composition of three normal
rule diagrams (yellow boxes) into a composite

rule diagram.

N. Behr, V. Danos, I. Garnier, Stochastic mechanics of graph rewriting, LiCS’16, New York



Step 4: Normalization of rule diagrams

• Given a generic rule diagram d , its
normalization Bpdq is defined as follows:

• Determine the input interface Ipdq and the
output interface Opdq of d as those input
and output graph parts that are not involved in
the diagram matches of d .

• “Read out” the internal structure of Bpdq via
following the worldlines from input to output
parts – all complete paths from Ipdq to Opdq
will be part of the injective partial map r̄pdq of
Bpdq ” pIpdq,Opdq, r̄pdq,∅q.

• Note that the normalized diagram Bpdq may
again be interpreted as a graph rewriting
rule, i.e.

Bpdq p“ r̄pdq : Ipdq á Opdq .

Example for a composition of three normal
rule diagrams into a composite rule diagram.
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Step 4: Normalization of rule diagrams

• Given a generic rule diagram d , its
normalization Bpdq is defined as follows:
• Determine the input interface Ipdq and the

output interface Opdq of d as those input
and output graph parts that are not involved in
the diagram matches of d .

• “Read out” the internal structure of Bpdq via
following the worldlines from input to output
parts – all complete paths from Ipdq to Opdq
will be part of the injective partial map r̄pdq of
Bpdq ” pIpdq,Opdq, r̄pdq,∅q.

• Note that the normalized diagram Bpdq may
again be interpreted as a graph rewriting
rule, i.e.

Bpdq p“ r̄pdq : Ipdq á Opdq .

output O(d)

input I(d)

Input interface Ipdq and output interface
Opdq of the composite rule diagram d .
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Step 4: Normalization of rule diagrams

• Given a generic rule diagram d , its
normalization Bpdq is defined as follows:
• Determine the input interface Ipdq and the

output interface Opdq of d as those input
and output graph parts that are not involved in
the diagram matches of d .

• “Read out” the internal structure of Bpdq via
following the worldlines from input to output
parts – all complete paths from Ipdq to Opdq
will be part of the injective partial map r̄pdq of
Bpdq ” pIpdq,Opdq, r̄pdq,∅q.

• Note that the normalized diagram Bpdq may
again be interpreted as a graph rewriting
rule, i.e.

Bpdq p“ r̄pdq : Ipdq á Opdq .

output O(∂(d))

input I(∂(d))

relation r̄(d)

Normalization of the composite rule diagram.
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Step 5: Rule diagram algebra

Rule diagram algebra
Denote by D :“ spanRpD–q the vector space of isomorphism classes of rule diagrams D–.
Then one may define an algebra composition ˚D as follows: given two rule diagrams d1, d2 P D,
define

d1 ˚D d2 :“
ÿ

all diagram matches m

iso-class of d1 composed with d2 along m .

This compositon is then extended by linearity to all of D. We call D ” pD,`, ¨, ˚Dq the rule diagram
algebra.

Theorem
The rule diagram algebra is a noncommutative, unital associative algebra, with unit the empty
rule diagram d∅.
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Step 6: Rule algebra

Rule algebra
Denote by R :“ spanRpR–q the vector space of isomorphism classes of normal rule diagrams
R–. Then one may define an algebra composition ˚R as follows: given two normal rule diagrams
r1, r2 P R, define

r1 ˚R r2 :“ Bpψpr1q ˚D ψpr2qq ,

where ψ : R ãÑ D is the natural inclusion. This compositon is then extended by linearity to all of R.
We call R ” pR,`, ¨, ˚Rq the rule algebra.

Theorem
The rule algebra is a noncommutative, unital associative algebra, with unit the empty rule
diagram d∅.

• Note: The proof is based on demonstrating that ϕ̄ :“ B ˝ pψ b ψq is an algebra homomorphism
from the rule diagram algebra D to the rule algebra R.
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Step 7: Canonical representation of the rule algebra

• Let |Gy denote the basis vectors of the vector space G of isomorphism classes of finite
directed multigraphs.

Canonical representation of the rule algebra
Taking inspiration from the canonical representation of the so-called heisenberg-Weyl algebra,
one may easily define the canonical representation of the rule algebra as follows:

ρpO
r
ðù Iq|∅y :“

$

&

%

|Oy , if I “ ∅

0 ¨ |∅y , else.

Moreover, for G ‰ ∅, we define

ρpO
r
ðù Iq|Gy :“ ρppO

r
ðù Iq ˚R pG ð ∅qq|∅y .

Theorem
This definition yields a proper representation.
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Step 8: Stochastic mechanics

Core definition: the evolution operator
Given a stochastic graph rewriting system T in the form of a set of graph rewriting rules
I

r
ùñ O and a set of base rates κr P Rě0, we may define the evolution operrator H as follows:

H :“
ÿ

rPT

κr

ˆ

ρprq ´ ρpI
iddomprq
ðùùùù Iq

˙

.

Theorem
H thus defined

• is an infinitesimal stochastic operator

• captures the dynamics of the system via the Master equation d
dt |Ψptqy “ H|Ψptqy.

Consistency check
Specializing to discrete graph rewriting, we recover precisely the evolution operator of chemical
reaction systems, as described in the Doi-Peliti formalism!r3sr4sr5s

[3] Masao Doi. “Second quantization representation for classical many-particle system”. In: Journal of Physics A: Mathematical and General 9.9 (1976), p. 1465

[4] Masao Doi. “Stochastic theory of diffusion-controlled reaction”. In: Journal of Physics A: Mathematical and General 9.9 (1976), p. 1479

[5] L Peliti. “Path integral approach to birth-death processes on a lattice”. In: Journal de Physique 46.9 (1985), pp. 1469–1483
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Harvesting of results



Unification

• We identified a formalism in which a stochastic graph rewriting system is described in a fashion
completely standard in both CTMC and statistical physics theory!
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Fragmentation theorem rederivation

Lemma

For any rules O1
r1
ðù I and O2

r2
ðù I with dompr1q “ dompr2q, we have that

x|ρpO1
r1
ðù Iq “ x|ρpO2

r2
ðù Iq “ x|ρpI

rI
ðù Iq ,

with rI :“ iddompr1q “ iddompr2q.

Theorem: Jump-closure of observablesr6s(compare r6s)
Let H be the evolution operator of a stochastic graph rewriting system. Then for any observable
OI :“ I

rI
ðù I we have that

x|OIH “
ÿ

OI1PFpOIq

αOI ,OI1 ,Hx|Oi1 ,

for some constants αOi ,OI1 ,H P R, and with FpOIq a finite family of observables.

Corollary: Fragmentation Theorem (compare r6s)
d
dt
xOIyptq “

ÿ

OI1PFpOIq

αOI ,OI1 ,HxOi1yptq .

[6] Vincent Danos et al. “Approximations for Stochastic Graph Rewriting”. In: Formal Methods and Software Engineering - 16th International Conference on Formal Engineering
Methods, ICFEM 2014. Ed. by Stephan Merz and Jun Pang. Vol. 8829. Lecture Notes in Computer Science. Springer, 2014, pp. 1–10
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New result: Generalized Fragmentation Theorem

• Any evolution operator H admits a unique decomposition H “ Ĥ ` H̊, with the
non-observable part Ĥ and observable part H̊

Ĥ “ ρpr̂q : r̂ P RzO , H̊ “ ρp̊rq : r̊ P O ,

where O Ă R denotes the subalgebra of observables.

Theorem: Generalized Fragmentation Theorem
For any evolution operator H and any observables O1, . . . ,On P O, we have that

d
dt
xO1 . . .Onyptq “

ÿ

σPSn

1
n!

n
ÿ

m“1

˜

n
m

¸

xCpOσm, Ĥq
ź

iąm

Oσpiqyptq ,

where
Oσm :“ tOσpiqu1ďiďm ,

and with the nested commutators

CpOsigma
m , Ĥq :“ rOσp1q, rOσp2q, r. . . , rOσpmq, Ĥs . . . ss .
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Conclusion and outlook



Summary

• We defined a full stochastic mechanics framework for graph rewriting (of DPO type).

• Based on the new formulae, we were able to achieve not only a standard formulation of the
so-called Fragmentation Theorem, but more importantly found a compact expression for a
Generalized Fragmentation Theorem for arbitrary moments of observables.

• The full formalism is an autonomous, mathematically well-posed framework for graph rewriting.
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Outlook

• All results presented strictly speaking are only fully well-behaved for finite systems; while
practical experience would suggest applicability also for infinite systems with suitable properties,
this remains an open research question!

• Study mathematical properties of the rule diagram algebra more closelyr7s.

• Generalization of the rule algebra idea to other types of rewriting (e.g. SPO typesr7s, Kappa,
biological tissue models. . . ).

• The combinatorics of rewriting is in principle accessible along the lines of the analytical
combinatorics formalismr8s.

• Generalization of the formalism to branching and fusing rewriting (and also a proper analysis
of the category-theoretical foundations of graph rewriting) – project with V. Danos, I. Garnier and
P. Sobocinski!

[7] Nicolas Behr, Vincent Danos, Ilias Garnier, and Tobias Heindel. “The algebras of graph rewriting”. In: (« Q4 2016)

[8] Philippe Flajolet and Robert Sedgewick. Analytic combinatorics. Cambridge University Press, 2009
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Thank you!
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