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The mathematical “blueprint”: the Heisenberg-Weyl algebra

» pure state: a pool of n indistinguish-

@ take outi partictes of type x able particles (of some type X)

9 put in o particles of type X

* generic operations: remove i parti-
cles of type X from the pool, then add
o particles of type X (with i,0 € Z~)

o
particles of type X

(indistinguishable) + elementary operations:

* pick a particle of type X at random and
remove it
+ add a particle of type X

= basic combinatorics:

< n possible ways to remove a particle
« 1 possible way to add a particle

Nicolas Behr (IRIF Université Paris Diderot & LPTMC Université Paris 6), October 10 2018



The mathematical “blueprint”: the Heisenberg-Weyl algebra

A possibility to encode non-determinism:

map multiple possibilities

outcome possibility 2
e @ ofransiions ..

...into “sum of possibilities”

(via employing the notion of a vector space
of states and of transitions as linear
operators on this space)

[ input ioie ey vansion ey o1 BN o> IO o B

(a vector) (a vector)



The mathematical “blueprint”: the Heisenberg-Weyl algebra

« from the theory of bosonic Fock spaces:

@ toke outi particies of type X

|[ny = pure state of n particles \
» Ansatz: encode the elementary operations in terms of

°
(representations of) the generators of the ncistngishanie
Heisenberg-Weyl algebra:

nln—1) iftn>0

alny:=
0 else

allny:=|n+1) (n=0)

+ canonical commutation relations:
(aa" —a%a) [n) = ((n+1) = (n)) [n) = |n)
o [a,a'l=ad' —ala=1 ’

[ oo a i B - I )

(a vector) (a vector)



Multi-species variant

« multi-species Heisenberg-Weyl algebra: defined via gener-
ators ai,a} and the canonical commutation relations

lai.a)) =0 =[a].a]], [ara]] =&,

where i,j € {1,...,N} (with N the number of species)

* pure states:
) = |n1,....nn)

« canonical representation:

niln—A4;) itn;>0
aj|ny =
0 else

af |y = |n+A;)

Nicolas Behr (IRIF Université Paris Diderot & LPTMC Université Paris 6), October 10 2018



Stochastic transition systems and continuous time Markov chain (CTMC) theory

- Standard CTMC theory [1]: one way to describe the
CTMC’s dynamics is to give a probability distribution
(with S the set of pure states)

discrete
[P(1)) := ZPS(Z)|S> state space

SeS

of being in one of the pure states (represented by basis
vectors |S)), and specifying the Master equation (aka set of

Kolmogorov forward equation) discrete
transitions

d
& () =H[¥(1)),

where H is the evolution operator.

How precisely H is determined for a given system will
be intimately related to the concept of
rule algebras in our formalism!

evolution operator
H

[1] James R. Norris. Markov Chains. Cambridge Series in istical and F ilisti ics. Cambridge University Press, 1998



The “stochastic mechanics” viewpoint

Benefits:
3 a full-blown formalism [2][3] aka “stochastic
mechanics” [4] for studying CTMCs:

= evolution of expectation values of observables
via Master equation:

d
- Observables ¢ are linear operators under which E<ﬁ>(t) =(OH)(1)

each pure state is an Eigenstate, " .
P 9  Additional property of the evolution operator H:

o1 = @0 S)S)- Gelwo) 21 = (=0,

+ Expectation values of observables are computed

. ) . i.e. H preserves normalizations.
by introducing the “dual projection vector”

= analogue of the Ehrenfest equation of quantum

(S):=1 VSeS, mechanics:
such that for any state probability distribution [¥(7))> %(ﬁ?(z) ={[O0,H])(1),
Ejw(),(0) =(O)(1) :={|O¥(1)). where [A, B] := AB — BA is the commutator

[2] M Doi. “Second quantization representation for classical many-particle system”. In: Journal of Physics A: Mathematical and General 9.9 (Sept. 1976), pp. 14651477

[3] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46-55

[4] John Baez and Jacob D Biamonte. Quantum Techniques in Stochastic Mechanics. WORLD SCIENTIFIC, May 2017


https://doi.org/10.1088%2F0305-4470%2F9%2F9%2F008
https://doi.org/10.1142%2F10623

A first hint at the practical advantages and potential of the framework

« Proposition ([5], Prop. 3.35): For linear op-
erators A, B € Endk (V') (with ¥ a K-vector
space) and A a formal variable,

e},ABe—AA _ ead“B ,

where

adyB:=[A,B] = AB—BA, adB := B.

[5] Brian C. Hall. Lie Groups, Lie Algebras, and Representations. Springer International Publishing, 2015

[6] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46-55

[7] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)


https://doi.org/10.1007%2F978-3-319-13467-3
https://arxiv.org/abs/1904.07313

A first hint at the practical advantages and potential of the framework

« Proposition ([5], Prop. 3.35): For linear op- - Define the moment-generating function .7 (1; 1)
erators A, B € Endk (V') (with ¥ a K-vector of the CTMC as

space) and A a formal variable, >
M(11) = <ew> (1),

e},ABe—AA _ ead“B ,
whence formally

where
. [521 e ///(,;&)H =(OM - OMN(0).
adyB:=[A,B] =AB—BA, ad B := B. ! * A—0
+ Application: suppose H is an evolution
operator, and let

&'QEZ%@

denote a formal linear combination of
observables 0;.

[5] Brian C. Hall. Lie Groups, Lie Algebras, and Representations. Springer International Publishing, 2015
[6] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46-55

[7] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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A first hint at the practical advantages and potential of the framework

- Proposition ([5], Prop. 3.35): For linear op-
erators A, B € Endg (V') (with ¥ a K-vector
space) and A a formal variable,

eXABe—AA _ ead;LAB ,
where

adyB:=[A,B] = AB—BA, adB := B.

Application: suppose H is an evolution
operator, and let

A'QEZ%@

denote a formal linear combination of
observables 0;.

« Define the moment-generating function .#(1; 1)
of the CTMC as

M(11) = <ei'ﬁ> (1),

whence formally

) 0=<ﬁgl---ﬁgk (1).

(75,25 2]

Formal all-order moment
evolution equation [6][7]:

[5] Brian C. Hall. Lie Groups, Lie Algebras, and Representations. Springer International Publishing, 2015

[6] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)

(2016), pp. 46-55

[7] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)


https://doi.org/10.1007%2F978-3-319-13467-3
https://arxiv.org/abs/1904.07313

Delbriick’s insight: probability generating functions

» probability generating function: given a probabil-

Bargmann-Fock ity distribution [y) = 3, - pn |2,
representation [8]
V) o P(x)i= Y part
n=0
N
> < T Delbriick [9]
i=1
aj P % (multiplication by x;) The master equation for a chemical reaction
aj < 0@1 (derivation by x;) system with reactions
XX

» normal-ordering relation: for all formal
power series f =f(x1,...,xN),

. 0 s \f—3§ .
(ngT/—ijxz)f—swf

‘Q)

Q)

iP(6x) = Zrz‘g (@°2— @9 (jl)iP(z;é)

1,0

[8] V Fock. “Verallgemeinerung und Lésung der diracschen statistischen Gleichung”. In: Zeitschrift fiir Physik A Hadrons and Nuclei 49.5 (1928), pp. 339-357; Valentine Bargmann. “On a Hilbert space
of analytic functions and an associated integral transform part I". In: Communications on pure and applied mathematics 14.3 (1961), pp. 187-214

[9] Max Delbriick. “Statistical fluctuations in autocatalytic reactions”. In: The Journal of Chemical Physics 8.1 (1940), pp. 120-124




A seminal result on normal-ordering techniques

R

Let % be a semi-linear operator (in the Bargmann-Fock basis for N species),

N
H = V@) + Z Qi@) axi )
i=0
with ¢;(%) and v(%) some functions in the operators ;. Let F(0;x) be an entire function in the indetermi-
nates x;. Define the formal power series (with formal variable 1)
F(A;x) := e F(0;x).
Then F(4;x) may be expressed in closed form as follows:

ZTi(A%) = qi(T(A:x), Ti(0:x) =xi

A

F(A:x) = g(A:x)F(0;T(A:x)) ng(Aix) = §Fv(T(kx))dx
X)) =Y VILIKGX

Moreover, e*# induces a one-parameter group of transformations due to

TA+ux) =T(w:;T(A:x), A+ p;x) =g(A:x)g(1;I(A;x)),

[10] G. Dattoli et al. “Evolution operator equations: Integration with algebraic and finite-difference methods: Applications to physical problems in classical and quantum mechanics and quantum field
theory”. In: Riv. Nuovo Cim. 20N2 (1997), pp. 1-133; P Blasiak et al. “Boson normal ordering via substitutions and Sheffer-Type Polynomials”. In: Physics Letters A 338.2 (2005), pp. 108-116




Result: exact actions of evolution semi-groups

)

Table 3 Closed-form results for the time-dependent probability generating functions P(r;x) for reaction systems of N species with a single
non-binary elementary reaction; here, Sy,

..,Sy denote the N different species, while A; (i € {1,...,N} denotes the N-vector with coordinates

(&) = 6.

reaction H = q(x) - +v(x) P(t;x) = g(t;x)P(0; T (t;x) comments

02X, o(%—1) Pois(out;x;) - P(0;x) Pois(p;x) := e*(-1)

0 Si+S; o (&% —1) (e""(""‘f")) -P(0;x) (Poisson distribution, 0 < p1 < o)
NE-Y) o(l—2%) 3'77, P(0;x+ (—x;+ Bern(e~*;x;)) A;) Bern(p;x) :=(1—p)+xp
Si—S8; (i#)) o (% — %) a% PO:x+ (—x;i+ (xj(1 —e ) +xe" ") A;) (Bernoulli distribution, 0 < 1 < 1)
5; 428 o (2 -%) 3% P(0;x+ (—x; + Geom(e™*;x;)) A;) Geom(l;x) == %
S A Si+8; (i#)) o (8% — %) 2= P(0;x+ (—x; +x;Pois(at;x;j))) A;) (Geometric distribution, 0 < y < 1)
SESS (£i#K)  alf-8) L POzt Cotapm(l—e ™) tne*)a)

[11] Nicolas Behr, Gerard HE Duchamp, and Karol A Penson. “Combinatorics of Chemical Reaction Systems”. In: arXiv:1712.06575 (2017)



https://arxiv.org/abs/1712.06575

On the evolution equation for the moment generating functions [10]

» Well-known fact: there exists a change of variables
M (1) = P(1eh)
that allows to determine the moment generating function .# (#; 1) directly from P(z;x) (i.e. x; — )
+ Idea: apply this change of variables also to Delbriick’s evolution equation

0= Yo (@2~ ) (£) Pls2)

Moment generating function evolution equation ([11], Theorem 5)

QM (t;1) = D(A, )4 (1;1)

k) := Hﬂ(ijak/‘),

JjeS

with S the set of species, and with s; (i,k) denoting the (signed) Stirling numbers of the first kind.

[10] Nicolas Behr, Gerard HE Duchamp, and Karol A Penson. “Combinatorics of Chemical Reaction Systems”. In: arXiv:1712.06575 (2017)
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Combi ics of chemical reaction sy
Nicolas Behr”, Gérard H. E. Duchampl’ and Karol A. Penson*

ropose a concise stochastic mechanics framework for chemical reaction systems that allows to formu-

e eon equations for three general types of data: the probability generating functions, the exponential

‘moment generating functions and the factorial moment generating functions. This formulation constitutes
f statistical physics and of

« 0
- mlyically save the volution equaion for nll s slmenary typs of igle-speies henica acions
= by cither combinatorial normal-ordering techniques, or, for the binary ans of Sobolev- U s
S i il olynomial. Th former st of el in prculs ighighs e elationship between . P
. inficsimal genertorsof sochastie velurion and prametric wansformation fo probabiliy disrutons ]
3 Morcover, we present exact resulis for generic single-species non-binary reactions, hinting at a notion of
3 compositionality of the analytic techniques.
= b o
— 1 Introduction clear conceptual separation of (i) the state space of 4
- the system and (i) the linear operators implement-
5. Intended as an invitation to interdisciplinary re- ing the evolution of the system. Combined with —— * ,
L searchers and in particular to combinatorists, we  insights obtained in a recent study of stochastic e 'L
"= present in this work an extension of the early work  graph rewriting systems [4-6], one may add to au %000 i
£ of Dellbriick [1] on probability g:nem!mg func-  this list (iii) the linear operators that implement wn
= tions for chemical called  observable quanities such as moments of number
T Sochasic mechanics frmework. Whil (b idea  counts on sses. It 5 only thrugh combining th e <0
= o study chemical reaction systems in temms of  Ansatz with the standard notions of combinatorial P
i probbilty generating functions is thus not new and Seneraing fncionsda we i he e sengis
{7, on the contrary one of the standard techniques of  of the stochastic mechanics approach: providing
O this field (see e.g. 2] for a historical overview). we  an avenue to obtain exact solutions to dynamical i
= believe that the reformulation of these techniques in  evolution equations. Combinaterists will recognize —— - = g
! terms of the stochastic mechanics formalism could  in our formulation of evolution :quauons intrinsic AL ' T
™= lead (o fuitful interaction of a broader audience  notions of normal-ordering problems, and ind ] » . —
o theoretca reeanchers. Tnthe <piit of he idess  cetan semi near ol otdering techigues {1- ) R
> presented by M. Doi in his seminal paper [3], the  10] will prove immensely fruitful in this direction \ ) | e 00
7. main morivarion for such a reformultion lies in 2 Chemists and other practitoners might appreciate .
F i e e nformaiqs Fndonrie 1) hat o solutions ot only provide sympiotic JR———
Universie Paris-Diderot (Purs . -
s systems, but on the contrary full information o v et -
ot d P ord (LW, i the ovlution of recion sy from any il . '

Galiée, CNRS UMR 7030, Universié Paris 13, Sorbonne  state at time 1 = 0 to any desired time 1 = T (with
e Ci Vil e EMl shed€liman 7 0, Wil many ndividual eslts on such
paris

* Laboratoie de Physique Theorique de la Matiére Condensée  iMe-evolutions are known in the literature (2. 11].
LPTAC) CARS UMK 7600 S Ui Unver Ve hope hat our concise fomlism may help (o
sié Piere et Marie Curie (Pars 06), France; E-Mail: pen- consolidate the knowledge on the mathematical
onipjusieufs
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framework

Nicolas Behr (IRIF Université

Paris Diderot & LPTMC U

iversité Paris 6), October 10 20



Overview: the DPO rule algebra framework [11][12]

-

basic structure:
a finitary extensive,
adhesive category

FinSet, FinGraph,. ..

objects = possible
configurations/
states

monomorphisms
= possible
subobject relations

spans of monos
= possible
transitions/(linear)
rewriting rules

r= (02K

@ DPO rewriting: data types J

[11] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21

[12] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)



https://arxiv.org/abs/1904.07313

Overview: the DPO rule algebra framework [11][12]

Ve
Rc — K-vector space

spanned by basis vectors

5(r)y =60 < K 5 1)

composition on Rc:
8(ra) ¥re 0(r1) i= 3, 8(r2 < 11)

m — matches
. <. — DPO rule composition

rule algebra:
Rc = (Rc, *re)
' state space:
)

= spank ({|X) | X € obj(C)~

canonical representation:

pc : Re — Endg(C)

such that
p(8(r2))p(d(r1)) = p(8(r2) *rg 6(r1))

@ DPO-type rule algebra J

[11] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.

Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21
[12] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Overview: the DPO rule algebra framework [11][12]

Ve
( set of transitions
with base rates:
{(s: (0 2 1,2 1,) )}
jeJ
J
( infinitesimal generator
of a CTMC:
H=3r; (PC(‘S(O]' & K; < IJ))
JeJ
~ro(5(1; = 1y = 1) )
J
( evolution equation:
&= Hv(®)
W)y = > px®)X)
eProb(c)  XEoPI(C)=
J
@ stochastic DPO rewriting systems J

[11] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21

[12] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Overview: the DPO rule algebra framework [11][12]

set of transitions

'é Rc — K-vector space N
basic structure: spanned by basis vectors with base rates:
a finitary extensive, 8(r) =60 <L K 5 1) o; i
adhesive category {(K]" (O] - K= 11))}15 J
) J

FinSet, FinGraph,. ..

composition on R¢:
. . m
objects = possible 8(ra) #ro 8(r1) = 2y 8(r2 < 11) 4 infinitesimal generator
configurations/ m — matches of a CTMC:
states . <. - DPO rule composition || [J — > K; (/)C <§(O] N K; BN I,))
jed

i e
monomorphisms Ro *ﬂc((*(fj < Kj <> TJ)>>

= possible

J

subobject relations state space: i
. : s s P
= spank({|X) | X € obj(C);})J evolution equation:
- &= H W)
spans of monos
= possible canonical representation: |w(t)) = Z px(t)|X)
> A —— -
transitions/(linear) pc : Re — Endg(C) eProb(c)  XEBI(C)x
e (a5 = o)+ 30 /
r= (0K p(8(r2))p(8(r1)) = p(8(r2) *re 0(r1
= @ stochastic DPO rewriting systems J
@ DPO-type rule algebra 7
@ DPO rewriting: data types 4

[11] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21
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Background: adhesive and extensive categories

Adhesive and extensive categories (cf. [13], Def. 3.1 ff)

A category C is said to be adhesive if
(i) C has pushouts along monomorphisms,
(i) C has pullbacks, and if
(iii) pushouts along monomorphisms are van Kampen (VK) squares.

If C in addition possesses a strict initial object X5 € 0b(C), i.e. an object s.th. VX € 0b(C) : I!my :
Xz — X, the category is said to be extensive.

« Examples [13]:
+ Set, the category of (finite) sets and set functions
» Graph, the category of (finite) directed multigraphs and graph homomorphisms (and also colored/typed
graphs, attributed graphs, hypergraphs,...)
+ any presheaf topos and any elementary topos [14]

+ Note: One might further generalize by considering quasi-adhesive categories (see [13],[15]).

[13] Stephen Lack and Pawet inski. “Adhesive and e ies”. In: RAIRO-T} i ics and ications 39.3 (2005), pp. 511-545
[14] Stephen Lack and Pawet Sobocinski. “Toposes are adhesive”. In: Graph , Third C , (ICGT 2006). Vol. 4178. LNCS. Springer, 2006, pp. 184—-198
[15] Richard Garner and Stephen Lack. “On the axioms for adhesive and quasiadhesive categories”. In: Theor. App. Categories 27.3 (2012), pp. 27-46




Brief comments on abstract category-theoretical structures:

* pushout (PO) along monomorphisms in the category Set:

. A — intersectionof Band Cin D
Interpretation: .
\ / D — union of Band C along A

» pushout complement (POC) of D < B «<— A: a set C and monomorphisms D < C < A such that the
square o(ABDC) is a pushout

« pullback (PB) along monomorphisms in the category Set:

Interpretation: A — intersectionof Band Cin D

\/




Brief comments on abstract category-theoretical structures:

- from [16]:

Definition 1. A van Kampen square is a pushout di- ' c oy
agram as in Fig 1 which satisfies the following condi- I / ) ~L /
tion: N ) / B
9 Dy
— for any commutative cube, as illustrated, of which  « " i b

Fig 1 forms the bottom face and the back faces are m c
pullbacks: the front faces are pullbacks iff the top 4 =

d
face is a pushout. AN /

The following lemma shows that, in categories with pushouts and pullbacks,
van Kampen squares paste together to give van Kampen squares.

[16] Stephen Lack and Pawet Sobocinski. “Toposes are adhesive”. In: Graph Transformations, Third International Conference, (ICGT 2006). Vol. 4178. LNCS. Springer, 2006, pp. 184—198




Brief comments on abstract category-theoretical structures:

from [17]: in an adhesive category C, for every object Z € ob(C) one may define the subobject lattice Sub(Z)
via defining a preorder on the monomorphisms x : X < Z (with x < y if there exists some monomorphism
i:X— Ysuchthaty=iox)

Corollary 5.2 of [17]

The lattice Sub(Z) is distributive.

Proof: It is easy to verify that the front and back faces of the cube below are pullbacks. Because the
bottom face is a pushout, we use adhesivity in order to conclude that the top face is a pushout, which in
turn implies that An (BuC) = (AnB) U (An C). o

ANBNC

— |
ANB ANC
| \)Am(Buc)l/ ‘

\C
\BUC/

.

[17] Stephen Lack and Pawet Sobocinski. “Adhesive and quasiadhesive categories”. In: RAIRO-T! ical Informatics and ions 39.3 (2005), pp. 511-545




DPO rewriting in extensive categories

Rewriting an object with a rule applied at a match (cf. [18], Def. 7.3)

Fix an extensive category C. Let
« X € 0b(C) be an object,
«r=(0 LIy QLR I) a (linear) rule, denoted r € Lin(C) (with Input /, Kontext K and Output O)
* m: 1 — X a monomorphism.

Then m is called an admissible match, denoted
me M,(X),

if and only if the diagram below is constructible™:

° o [ 0 I’m @ pushout complement ( )
\ A\ ® pushout (which always exists!)

rm(X) <> K o X

In that case, r,,, (X) is referred to as the rewrite of X with rule r along the match m.

.

[18] Stephen Lack and Pawet fiski. “Adhesive and i i ies”. In: RAIRO-TI ical Informatics and ications 39.3 (2005), pp. 511-545




Composition of linear rules in DPO rewriting

Sequential composite of linear rules along a match (compare [19], Sec. 3)

Fix an extensive category C. Let

« 1= (0; & K; ci>1-) (j = 1,2) be two (linear) rules, and let

- u=(I BUIERY ARLLEIN 0,) be a span of monomorphisms.

U is called an admissible match, denoted u € ry |- 7, if and only if the diagram below (where all arrows
are monomorphisms) is constructible:

()]2 < K > Y12 - é > I]’7

A A—
PO POC / PO \ POC PO

My ——> O3 <f1<24>12

01<7K14>11 07

0] i mio may

012

U . . .
Then the rule | < = (0 ety 0 LB I1,) is referred to as composite of r; with r, along the
match u.

(.

[19] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPlcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21




DPO-type rule algebras [19]

Let C be an extensive category, and denote by Lin(C) the set of linear rules. Define the free K-vector
space

R = spank ({5(r)\r =(0%KbD)e Lin(C)}) (for K a field, e.. K = R, C).
Then Z¢ equipped with the bilinear multiplication law,

02 it (rylFr)=9o

%0 Ao x He — e (8(r1),8(r2)) —
) l Z,ue(rlll—rz) 6(r l:rz) otherwise

is an associative unital algebra, referred to as DPO-type rule algebra over C,
with unit for # 4 givenby 6(ry) 1= 6(F «— @ — @).

[19] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21




Canonical representations of DPO-type rule algebras [19]

Let C be an extensive category, and define C as the free K-vector space spanned by isomorphism
classes of objects of C,
C:= spang ({|X)|X € 0b(C)=}) .

Then the canonical representation p¢c of % is defined as

¢ 0¢ it Mp(X) =@
pc : Zc — Endg(C) : pe(r) [X):={ € ( ')
Simem, (x) lrm(x))  otherwise.

[19] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories™. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21




Stochastic rewriting systems as
continuous-time Markov chains (CTMCs) [20] [21]

Input: - a set of linear rules with base rates {(x;,r; = (O; Z K; A Ii)}jes (with k5 € R ) and
- an initial state |¥) € Prob(C) (— probability distributions over the state space C)

Output: a CTMC with time-dependent state |\¥'(z)) € Prob(C) and evolution equation (with
t>0)
GIP@O)=HI¥®), |¥(0))=|¥o)

H=2Kj(pc (5(0,»&19&»1,)) —pc (5(1j<i’1<ji>lj)))

jeJ

[22] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46-55

[23] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21




Observables = diagonal linear operators on C [18][19]

Forall I € 0b(C) and i : K < I € mor(C), the operators & := pc(8(I Lid 1))
are diagonal operators on C, by virtue of the symmetry of the diagram below (if it is ):

I d K ‘w1
o r

2 @ *‘ (D m
I‘m(X) =X « s K cece X

@ pushout complement ( )
® pushout (which always exists!)

[20] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46-55

[21] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21




Key result: Combinatorial Conversion Theorem [22][23]

- define the “dual projection vector” (| : C — Kvia VX € ob(C): {(|X):=1g

= Consequence: so-called jump-closure, whereby for all linear rules (0 <> K 4 I) € Lin(C) one finds that

Upc (8 (0K 1)) =dpc(8 (1K 1)) =6},

A stronger notion of closure: polynomial jump closure

Consider a stochastic rewriting system with evolution operator H. Then we refer to a set O of connected
observables,
. .
0= {0 =0y, =p(M; = K; = M})}jes
for some (possibly countably infinite) index set J as polynomially jump-closed if and only if it satisfies
the polynomial jump closure (PJC) condition

N(n)

(PIC) VneZsg:3N(m) e NS p(Ask) eR: (adyyH = ) 1(A:k) (| 6.
k=0

.

[22] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories™. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1-11:21

[23] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Key result: Combinatorial Conversion Theorem [22][23]

A stronger notion of closure: polynomial jump closure

=

(n)
(PIC) VneZso:3N(m) Ny yu(A:k) eR: (ad)’yH = Y m(A:k)(| O*.
0

o =
Combinatorial Conversion Theorem

For a polynomially jump-closed set of connected observables O = {0} jc; of a system with evolution
operator H, the evolution equation for the EGF .# (#; 1) of the moments of the observables O may be
converted from its explicit expression in the observables ¢ into a partial differential equation of
A (t; 1) itself w.rt. the formal parameters {A;};e;:

|

M(5A) =DA,0) A1),  D(R.3) = | [ (e22m)]| | |1y

6— %

)

1

Here, in the definition of the differential operator D, we have made use of the assumption of polynomial
jump-closure in converting the expression in square brackets into | applied to a formal series in the &;.

J

[22] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPlcs). Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018, 11:1—-11:21
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Key result: Moment Bisimulations [24]

Definition of Moment Bisimulations

Consider two systems with evolution operators H; and two equinumerous sets O; of connected graph
observables polynomially jump-closed w.r.t. H;, respectively (i € 1,2). Denote by f : Oy = 0, a
bijection of the two sets of observables. Then the pairs (H,0;) and (H;,0,) are said to be moment
bisimilar (via f) if the moment bisimilarity (MB) condition holds:

|2 .

, 1= [ (¢ 2m,)]

Oi_)TA;

mB) | [(| (ewor) |

(00—

Then by virtue of the Combinatorial Conversion Theorem,
G (6:0) = §.M0(62), A(52) = | 2D By (1))

and whence for choices of initial states |1 (0)) € Prob(C,), |¥,(0)) € Prob(C,) such that
M (0;1) = A5 (0;1) one finds that .2 (t; 1) = .45 (t; A) for all £ = 0 (if the solution exists).

[24] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Key result: The Discrete Moment Bisimulation Theorem [25]

Idea: consider moment bisimulations between some generic stochastic rewriting system (SRS) and a discrete SRS — we will
see some explicit examples in a moment!

The Discrete Moment Bisimulation Theorem

Let H = > .k Kk(pc (i) — Oc (hi)) be the evolution operator of a SRS, and let O = {0} e be a polynomially
jump-closed set of observables for H. Suppose the following two conditions (amounting to the discrete moment

bisimulation (DMB) condition) are verified:

(i) Vjed.keK:InjreZ: adg(pc(hi)) = njxpc(hi)

(DMB) L&
() VkeK:3opeRLeNy s dpc(n) = o Y, | [Tsi(@)imy) | €™
n=0 \ J

Then for every isomorphism F : J => & from J to a set of vertex colors €, denoting by Oyiser := {fic}eew a set
of discrete connected graph observables (with 7i. € Oy, counting vertices of color ¢ € €) and by H . the
evolution operator of a discrete SRS of discrete graphs (€ 0b(G)) with vertices of colors ¢ defined as

Haiser := Z Ot K (P(;o ( ( o) gy '*)) PG, (5 (:& — o %:Q») v My 2= Mk
kek

the pair (H,0) is moment bisimilar to (Hiscr, Oiscr) via the isomorphism f(&}) := fip;).

[25] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems™. In: arXiv preprint 1904.07313 (2019)
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Application examples of the
stochastic mechanics framework for
graph rewriting systems




Comparison to normal-ordering style approaches to combinatorics

Some relevant results of [26]:

Fact: The only elementary observables (* connected motif observables in the general setting) are the
number operators #i; (one for each species i),

ﬁi::ajai, ni|ny = ni|n) (ie 7).

Fact: The jump-closure property specializes to (where x¥ := x]'x} - - -)

s

{(@ra® = Z )(|Ak  (s1(s:k) — Stirling numbers of the 1*' kind).
k=0

the Combinatorial Conversion Theorem entails that there always exists a full closure

(3
) <l> D(A,d,).4 (1)
61
without additional assumptions on the discrete rewriting system.

This is in stark contrast to generic rewriting systems, where we typically have no Ansatz to determine
interesting subsets of observables, and where closure is a delicate algebraic structure!

[26] Nicolas Behr, Gerard HE Duchamp, and Karol A Penson. “Combinatorics of Chemical Reaction Systems”. In: arXiv:1712.06575 (2017)
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Notational convention: rule diagrams

+ An inconvenience: in practice, explicitly providing the structure of a linear rule r = (O Ay AR I) € Lin(C)
is notationally somewhat cumbersome. . .

+ ldea: a span of monomorphisms such as (O Ay QER I) encodes a partial morphism O LI, whenceitis a
lot easier to represent r by the graph of this partial function, which we call rule diagrams [27] [28].

Notational convention for the special case of linear rules of graphs

Let G denote the category of finite directed vertex- and edge-colored multigraphs. Then a linear
rule r = (0 <= I) € Lin(G) is represented by its rule diagram, where / is drawn at the bottom, O at
the top, and where the internal structure of the partial map r is represented by dotted lines. We will
also simplify the notation further by dropping the symbol & (for elements J(r) of the rule algebra) when
writing the diagrams.

Example:

X
DX xQ

[27] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46-55
[28] Nicolas Behr, Vincent Danos, llias Garnier, and Tobias Heindel. “The algebras of graph rewriting”. In: arXiv:1612.06240 (2016)
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On the non-triviality of semi-linear processes: a variant of the Voter Model

Definition [29]:

Consider a model defined on a state space of bi-colored graphs (with white o and black e vertices,
say), and with the following two transitions:

o O\QQ 0O o\go
— —\
@ 5 ®

Here, the vertices marked ® can be of either black or white color. The corresponding evolution
operator H reads explicitly (with p = pg)

H:= p(hVM) = ﬁ(hVM)

o Oo——0 [ ] Oo—=e [e] *—-0 o *—9
hvm = koho + k1hy,  ho:=: , T i+, 7, b=, 07 4+ 7
———-o0 [¢] ——-oO [ ] O o (e, [ ]
Consider the edge observables:
Oo———O (e,
1 . .
Opo = 7P , O1:=3p » Oo1:=p
o——-0 O

[29] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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On the non-triviality of semi-linear processes: a variant of the Voter Model

Evolution of means and (co-)variances of the edge observables

Starting from a pure state |¥(0)) = |Gy) with initial counts Nx and parameters chosen as (with
Ny = Ny + Ny)

= %7 (NV7N07N007N017N11) = (100,80,20’20’20)’

one obtains the following analytical results:

Ko = —

var(O)(t
var(Oo:)(t)
var(01:)(t)
covar(Ogo,01)(t)
covar(0oo,011)()
—-— covar(0g1, 011 )(t)

— ©))
..... [0}
.......... O

The plots illustrate the following analytical result on the asymptotic limit 1 — oo
of the exponential moment generating function:

N,
A{) A 01
lim <eAE ﬁE> — Koe™ + Kje™! MoNoo+AnNi
t—00 Ko + K1




(a) Time-evolution of the edge observable count probability distribution

t=0.05 t=0.25
1072
4
3 =
S
2
=
a
1
0

probability

probability

probability



Taking advantage of discrete bisimulations: a cryptocurrency toy model [29]

n o
o 2. = = hp:= , op:=
O al

(a) Ticket de-activation

(]
(]
O *——O0——0 O——e——0
e = he = . y  0G =
O e—o0 0—e—+o0
(b) Ledger growth
]

i hp = *

1>

or =

(c) Ticket production

[29] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Taking advantage of discrete bisimulations: a cryptocurrency toy model [29]

] hp _
. m} &——oO
LN =
+——e—oO
op =
O——e——oO

]LR =

&
_—
IR

O O o O O . o O ° o O . o
OR = . ;

o—+>e—~o 1+—>e—>0/ \O}>e—>o0

(e) Ticket rearrangement

[29] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Taking advantage of discrete bisimulations: a cryptocurrency toy model [29]

The model is bisimilar to the following discrete rewriting system:

Xo 2 Xo, X., © X,

Xoy & Xo, + Xo Xo, ~& X, + Xo

X, 5 2X0, + X +2X, Xoy 5 KXoy + Xoy + Xi +2Xo
Xop 2 Xo, 42X, + X +2X0 Xoy 253X, + Xoy + X +2X,

RN
KXoy + Xo, 2X., -
* X;, X, <> observables counting transaction nodes resp. ledger notes

* Xo, , Xo, <> Observables counting transaction nodes with exactly 1
resp. more than 1 active tickets attached (with Xm, and Xm, the versions for inactive tickets)

.

[29] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Alternative to exact solutions: numerical simulations [30]

kappalanguage.org

¢ 0 Kappa Language

A rule-based language for modeling interaction networks

HOME  NEWS  ONLINEUI ~ DOWNLOAD  DOCUMENTATION  KAPPASPHERE ~ CONTACT

JAxn(GSK). GSKiAwgH]

I roxotB 1. Aunipin 12, Ax2H), Aunli2!2)]
I x93, A 12, A1), A3, Ax22), AxniA213]

T T T T T
[ 50 100 150 200 250 300 350 400 450 500 550 6™

[29] The Kappa language and KaSim simulation engine, https://kappalanguage.org
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Taking advantage of discrete bisimulations: a cryptocurrency toy model [30]

—_— ledger nodes o

—_— transaction nodes e

104 active tickets at degree 1 transaction nodes
———— active tickets at degree > 1 transaction nodes
———— inactive tickets at degree 1 transaction nodes

102 inactive tickets at degree > 1 transaction nodes

0
10 | | | |
0 50 100 150 200 250
time

» While not analytically solvable, the discrete system may be studied by numerical simulation algorithms
such as Gillespie’s SSA algorithm.
* In comparison, a direct numerical simulation of this rewriting system is prohibitively complex!

+ Application: one may use the results of the discrete model’s simulation in order to study the dynamical
properties of the system with respect to its parameters, and e.g. use these results to pick a particular
candidate model for concrete practical applications.

[30] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Appendix: Chemical reaction systems
as discrete rewriting systems




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

A first consistency check and interesting special (and arguably simplest) case of rule algebras:

The Heisenberg-Weyl algebra

Let Z,) denote the rule algebra of DPO type rewriting for discrete graphs. Then the subalgebra .77 of
%, is defined as the algebra whose elementary generators are

ﬂ;:(.ég)) x:=(®2.),

and whose elements are (finite) linear combinations of words in xT and x (with concatenation given by the

o . .
rule algebra multiplication ¢, ) and of the unit element Ry, = (@ < @). The canonical representation
of 7 is the restriction of the canonical representation of % to 7.




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Weyl algebra: with a' := p(x'), a:= p(x), 1 := p(Ro),
[a,a"]:=aa’ —afa=1

- realization/interpretation via the DPO rule algebra %,: consider the following three DPO-type compo-
sitions




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Wey! algebra: with a' := p(x'), a:= p(x), 1 := p(Ry),
[a,a"] :=aa’ —afa=1

- realization/interpretation via the DPO rule algebra %: consider the following three DPO-type compo-
sitions

o « L] > 0 0 « [ ] > o

et /N

J+— FJ —> 0 «— J —> 0 «—— J —>

(®£0)®<®(0£@)=(0£0)
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The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Weyl algebra: with a’ := p(x'), a:= p(x), 1 := p(Ry),
[a,a"]:=ad’ —dfa=1

- realization/interpretation via the DPO rule algebra %,: consider the following three DPO-type compo-

sitions

?J T ‘/":"\, T L%

Fe— O —> 00— 0 —> 0 +— J —> T




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Wey! algebra: with af := p(x), a:= p(x), 1 := p(R),
[a,a"] == aa’ —afa=1

« realization/interpretation via the DPO rule algebra %,: consider the following three DPO-type compo-
sitions

oy N

G e— T —> 0 — 0 —> 0 — J —> J

(tho) P (o‘g@):(@‘g@)




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Weyl algebra: with a’ := p(x'), a:= p(x), 1 := p(Ry),
[a,a"]:=ad’ —dfa=1

- realization/interpretation via the DPO rule algebra %,: consider the following three DPO-type compo-

sitions

S N

0o «— J —» J «— J —> J «— J —> o




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Wey! algebra: with a' := p(x'), a:= p(x), 1 := p(Ry),
[a,a"] :=aa’ —dfa=1

« realization/interpretation via the DPO rule algebra %,: consider the following three DPO-type compo-

sitions

o — O — > J +— J—> J «— F —> @

2 (020) (@2 (a2




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« it is straightforward to verify that

T F _(qwm 2 _ I _wn
X' xg X = (0V" =), xxgp .. kg x=(T=eY")
m times n times




The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« it is straightforward to verify that

g 7]
XT * %0 "'*,%’OXT = (.wm = @), XHgp oo Kgp X = (@C .W”)

m times n times

+ analogously, we find the following:

kg g X | Hop, xl *%, ...*%XT = (g 2 o) wgp (0 Z &)
m times n times
= 6(A1n) *% 6(Bn)
Z 6((®£.wm)21(.wn£®))
mEA, -8B,

min(m,n)
= iLL . wn—k 2 _wm—ik
- k§0 (k! (mfk)!(nfk)!) (' =* )

# of ways to pick k vertices from m and from n vertices disregarding order




Elementary nonary reactions — plots [30]
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Elementary unary reactions — plots [30]

1
— a=7

¢) decay reaction 1A =404 d) autocatalysis reaction 1A — 204
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A hint of compositionality [30]

a=1/3 y=1/3 7=1/3

a) 1A 2A, 0A 2A, 1A 0A b) distributions for a)

T T T T T T L T T T
104 1 0.1 N
r t=0.25 ]
100 1 0.08 F ]
il I ]
Z 006 ]
001 = r ]
S 004f .
10 S [ ]
10 L | | | ] 0.02 } E
0 5 10 15 20 L i
time 0 :— E
— o) — cot) — cs(t) - -

[30] Nicolas Behr, Gerard HE Duchamp, and Karol A Penson. “Combinatorics of Chemical Reaction Systems”. In: arXiv:1712.06575 (2017)



https://arxiv.org/abs/1712.06575

A hint of compositionality [30]
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A hint of compositionality [30]

Example: ternary parameter dependence plot for a reaction system composed of birth, pair creation and
decay reactions, for initial state |¥(0)) = |100)

a) Mean number of particles at time r = 1 b) Variance of number of particles at time r = 1
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A hint of compositionality [30]

Example: ternary parameter dependence plot for a reaction system composed of birth, pair creation and
decay reactions, for initial state |'¥(0)) = |100)

¢) Mean number of particles at time t = 4 d) Variance of number of particles at time t = 4
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A hint of compositionality [30]

Example: ternary parameter dependence plot for a reaction system composed of birth, pair creation and
decay reactions, for initial state |'¥(0)) = |100)

e) Mean number of particles at time t = 16 f) Variance of number of particles at time r = 16
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Binary reactions and Sobolev-Jacobi orthogonal polynomials

» The precise technical details are somewhat intricate, see the our paper!
+ The basic Ansatz is the one of McQuarrie [31], BUT the original Ansatz had a mathematical error. ..

» Problem: McQuarrie suggested to use the Jacobi polynomials as eigenfunction basis of the infinitesimal
generator, yet for the range of parameters of interest, these are ill-posed.

» Our solution: the mathematical problem has been successfully treated in the 1990’s by Kwon & Little-
john [32], who introduced so-called Sobolev-Jacobi polynomials.

» Aside: This is related normal-ordering, too! (But one of a new kind...)

[31] Donald A McQuarrie. “Kinetics of small systems. I". In: The journal of chemical physics 38.2 (1963), pp. 433-436; Donald A McQuarrie, CJ Jachimowski, and ME Russell. “Kinetics of small systems.
II". In: The Journal of Chemical Physics 40.10 (1964), pp. 2914-2921; Donald A McQuarrie. “Stochastic approach to chemical kinetics”. In: Journal of applied probability 4.3 (1967), pp. 413-478

[32] KH Kwon, LL Littlejohn, and BH Yoo. “Characterizations of orthogonal polynomials satisfying differential equations”. In: SIAM Journal on Mathematical Analysis 25.3 (1994), pp. 976—-990; Kil H Kwon,
LL Littlejohn, and BH Yoo. “New characterizations of classical orthogonal polynomials”. In: Indagationes Mathematicae 7.2 (1996), pp. 199-213; Kil H Kwon and Lance L Littlejohn. “Classification
of classical orthogonal polynomials”. In: J. Korean Math. Soc 34.4 (1997), pp. 973-1008; Kil H Kwon and LL Littlejohn. “Sobolev orthogonal polynomials and second-order differential equations”. In:
The Rocky Mountain journal of mathematics (1998), pp. 547-594




Elementary binary reactions — plots [32]
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