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Abstract

We describe an algebra G of diagrams that faithfully gives a diagram-
matic representation of the structures of both the Heisenberg–Weyl alge-
bra H – the associative algebra of the creation and annihilation operators
of quantum mechanics – and U(LH), the enveloping algebra of the Heisen-
berg Lie algebra LH. We show explicitly how G may be endowed with
the structure of a Hopf algebra, which is also mirrored in the structure
of U(LH). While both H and U(LH) are images of G, the algebra G has
a richer structure and therefore embodies a finer combinatorial realiza-
tion of the creation–annihilation system, of which it provides a concrete
model.
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Figure 2: Composition of two diagrams Γ2
m
! Γ1 according to the matching

m ∈ Γ
−
2 !▹!▹Γ

+

1 consisting of three connections.

Definition 3.2 can be straightforwardly seen as if diagrams were put over
one another with some of the lines going out from the lower one plugged
into some of the lines going into the upper one in accordance with a given
matching m ∈ Γ

−
2 !▹!▹Γ

+

1 , for illustration see figure 2. Observe that in gen-
eral two graphs can be composed in many ways, i.e., as many as there are
possible matchings (elements in Γ

−
2 !▹!▹Γ

+

1 ). In Section 3.3, we exploit all
these possible compositions to endow the diagrams with the structure of
an algebra. Note also that the above construction depends on the order
in which diagrams are composed and in general the reverse order yields
different results.

We conclude by two simple remarks concerning the composition of two
diagrams Γ2 and Γ1 constructed by joining exactly i lines. Firstly, we observe
that possible compositions can be enumerated explicitly by the formula

|Γ −
2 !▹!▹

i
Γ

+

1 | =

(|Γ −
2 |
i

)(|Γ+

1 |
i

)
i!. (3.1)

Secondly, the number of incoming, outgoing and inner lines in the composed

diagram does not depend on the choice of a matching m ∈ Γ
−
2 !▹!▹

i
Γ

+

1 and
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Figure A.1: Fine graining of the matchings m′ ∈ Γ
−
3!▹!▹(Γ2

m21! Γ1)
+

and

m′′ ∈ (Γ3
m32! Γ2)

−!▹!▹Γ
+

1 used in the proof of associativity of multiplication.

exactly the same. This completes the proof by showing equality of the right-
hand sides of equations (A.2) and (A.3).

Appendix B Forgetful morphism ϕ

In Theorems 3.2 and 4.2, we stated that the linear mapping ϕ : G −→ U(LH)
defined in equation (3.8) was a Hopf algebra morphism. We now prove this
statement.

We start by showing that ϕ preserves multiplication in G. From linearity
it is enough to check for the basis elements that ϕ(Γ2∗ Γ1) = ϕ(Γ2)ϕ(Γ1),
which is verified in the following sequence of equalities:

ϕ(Γ2∗ Γ1)
(3.7 )
=

∑

m∈Γ
−
2 !▹!▹Γ

+
1

ϕ(Γ2
m
! Γ1) =

∑

i

∑

m∈Γ2!▹!▹
i

Γ1

ϕ(Γ2
m
! Γ1)

(3.2)
=

∑

i

∑

m∈Γ
−
2 !▹!▹

i
Γ

+
1

(a†) |Γ+
2 |+|Γ+

1|−i a |Γ −
2 |+|Γ −

1|−ie |Γ0
2 |+|Γ0

1|+i (B.1)
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algebra, the Heisenberg–Weyl algebra H. This mainly arises by analogy with
classical mechanics whose Poissonian structure is reflected in the quantum-
mechanical commutator of position and momentum observables [x, p] = i!
[22]. In the first instance, this commutator gives rise to a Lie algebra
LH [23, 24], which naturally extends to a Hopf algebra structures in the
enveloping algebra U(LH) [25, 26]. An important equivalent commutator
is that of the creation–annihilation operators [a, a†] = 1, employed in the
occupation number representation in quantum mechanics and the second
quantization formalism of quantum field theory. Accordingly, we take the
Heisenberg–Weyl algebra H as our starting point.

In this paper, we develop a combinatorial approach to the Heisenberg–
Weyl algebra and present a comprehensive model of this algebra in terms
of diagrams. In some respects this approach draws on Feynman’s idea of
representing physical processes as diagrams used as a bookkeeping tool in
the perturbation expansions of quantum field theory. We discuss natu-
ral notions of diagram composition and decomposition, which provide a
straightforward interpretation of the abstract operations of multiplication
and co-multiplication. The resulting combinatorial algebra G may be seen
as a lifting of the Heisenberg–Weyl algebra H to a richer structure of dia-
grams, capturing all the properties of the latter. Moreover, it will be shown
to have a natural bi-algebra and Hopf algebra structure providing a con-
crete model for the enveloping algebra U(LH) as well. Schematically, these
relationships can be pictured as follows:

G
ϕ

!!!!!!
!!

!!
!!

!!
!

ϕ̄

"" """
""

""
""

""
"

Combinatorial
Algebra

U(LH)
π ## ## H Algebra

LH
!
" κ

$$######### $
ι

%%$$$$$$$$$

Lie Algebra

where all the arrows are algebra morphisms and ϕ is a Hopf algebra mor-
phism. While the lower part of the diagram is standard, the upper part
and the construction of the combinatorial algebra G illustrate a genuine
combinatorial underpinning of these abstract algebraic structures.

The paper is organized as follows. In Section 2, we start by briefly
recalling the algebraic structure of the Heisenberg–Weyl algebra H and
the enveloping algebra U(LH). In Section 3, we define the Heisenberg–
Weyl diagrams and introduce the notion of composition, which leads to the



The algebras of graph rewritingNicolas Behr⇤1, Vincent Danos†2, Ilias Garnier‡1 and TobiasHeindel§3
1Laboratory for Foundations of Computer Science, School of

Informatics, University of Edinburgh, Informatics Forum, 10

Crichton Street, Edinburgh, EH8 9AB, Scotland, UK
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2Institut Galilée – Université Paris-Nord , LIPN, CNRS UMR 7030,

99 Av. J.-B. Clement, F-93430 Villetaneuse, France

ghed@lipn
-univ.par

is13.fr
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algebra, the Heisenberg–Weyl algebra H. This mainly arises by analogy with
classical mechanics whose Poissonian structure is reflected in the quantum-
mechanical commutator of position and momentum observables [x, p] = i!
[22]. In the first instance, this commutator gives rise to a Lie algebra
LH [23, 24], which naturally extends to a Hopf algebra structures in the
enveloping algebra U(LH) [25, 26]. An important equivalent commutator
is that of the creation–annihilation operators [a, a†] = 1, employed in the
occupation number representation in quantum mechanics and the second
quantization formalism of quantum field theory. Accordingly, we take the
Heisenberg–Weyl algebra H as our starting point.

In this paper, we develop a combinatorial approach to the Heisenberg–
Weyl algebra and present a comprehensive model of this algebra in terms
of diagrams. In some respects this approach draws on Feynman’s idea of
representing physical processes as diagrams used as a bookkeeping tool in
the perturbation expansions of quantum field theory. We discuss natu-
ral notions of diagram composition and decomposition, which provide a
straightforward interpretation of the abstract operations of multiplication
and co-multiplication. The resulting combinatorial algebra G may be seen
as a lifting of the Heisenberg–Weyl algebra H to a richer structure of dia-
grams, capturing all the properties of the latter. Moreover, it will be shown
to have a natural bi-algebra and Hopf algebra structure providing a con-
crete model for the enveloping algebra U(LH) as well. Schematically, these
relationships can be pictured as follows:
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where all the arrows are algebra morphisms and ϕ is a Hopf algebra mor-
phism. While the lower part of the diagram is standard, the upper part
and the construction of the combinatorial algebra G illustrate a genuine
combinatorial underpinning of these abstract algebraic structures.

The paper is organized as follows. In Section 2, we start by briefly
recalling the algebraic structure of the Heisenberg–Weyl algebra H and
the enveloping algebra U(LH). In Section 3, we define the Heisenberg–
Weyl diagrams and introduce the notion of composition, which leads to the
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enveloping algebra U(LH) [25, 26]. An important equivalent commutator
is that of the creation–annihilation operators [a, a†] = 1, employed in the
occupation number representation in quantum mechanics and the second
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where all the arrows are algebra morphisms and ϕ is a Hopf algebra mor-
phism. While the lower part of the diagram is standard, the upper part
and the construction of the combinatorial algebra G illustrate a genuine
combinatorial underpinning of these abstract algebraic structures.

The paper is organized as follows. In Section 2, we start by briefly
recalling the algebraic structure of the Heisenberg–Weyl algebra H and
the enveloping algebra U(LH). In Section 3, we define the Heisenberg–
Weyl diagrams and introduce the notion of composition, which leads to the

Combinatorics of chemical reaction systems

Nicolas Behra, Gérard H. E. Duchampb and Karol A. Pensonc

We propose a concise stochastic mechanics framework for chemical reaction systems that allows to formu-
late evolution equations for three general types of data: the probability generating functions, the exponential
moment generating functions and the factorial moment generating functions. This formulation constitutes
an intimate synergy between techniques of statistical physics and of combinatorics. We demonstrate how to
analytically solve the evolution equations for all six elementary types of single-species chemical reactions
by either combinatorial normal-ordering techniques, or, for the binary reactions, by means of Sobolev-
Jacobi orthogonal polynomials. The former set of results in particular highlights the relationship between
infinitesimal generators of stochastic evolution and parametric transformations fo probability distributions.
Moreover, we present exact results for generic single-species non-binary reactions, hinting at a notion of
compositionality of the analytic techniques.

1 Introduction

Intended as an invitation to interdisciplinary re-
searchers and in particular to combinatorists, we
present in this work an extension of the early work
of Dellbrück [1] on probability generating func-
tions for chemical reaction systems to a so-called
stochastic mechanics framework. While the idea
to study chemical reaction systems in terms of
probability generating functions is thus not new and
on the contrary one of the standard techniques of
this field (see e.g. [2] for a historical overview), we
believe that the reformulation of these techniques in
terms of the stochastic mechanics formalism could
lead to fruitful interaction of a broader audience
of theoretical researchers. In the spirit of the ideas
presented by M. Doi in his seminal paper [3], the
main motivation for such a reformulation lies in a

a Institut de Recherche en Informatique Fondamentale (IRIF),
Université Paris-Diderot (Paris 07), France; E-Mail: nico-
las.behr@irif.fr
b Laboratoire d’Informatique de Paris-Nord (LIPN), Institut
Galilée, CNRS UMR 7030, Université Paris 13, Sorbonne
Paris Cité, Villetaneuse, France; E-Mail: ghed@lipn.univ-
paris13.fr
c Laboratoire de Physique Theorique de la Matière Condensée
(LPTMC), CNRS UMR 7600, Sorbonne Universités, Univer-
sité Pierre et Marie Curie (Paris 06), France; E-Mail: pen-
son@lptl.jussieu.fr

clear conceptual separation of (i) the state space of
the system and (ii) the linear operators implement-
ing the evolution of the system. Combined with
insights obtained in a recent study of stochastic
graph rewriting systems [4–6], one may add to
this list (iii) the linear operators that implement
observable quantities such as moments of number
counts on states. It is only through combining this
Ansatz with the standard notions of combinatorial
generating functions that we find the true strengths
of the stochastic mechanics approach: providing
an avenue to obtain exact solutions to dynamical
evolution equations. Combinatorists will recognize
in our formulation of evolution equations intrinsic
notions of normal-ordering problems, and indeed
certain semi-linear normal-ordering techniques [7–
10] will prove immensely fruitful in this direction.
Chemists and other practitioners might appreciate
that our solutions not only provide asymptotic
information on the time-evolution of the reaction
systems, but on the contrary full information on
the evolution of reaction systems from any initial
state at time t = 0 to any desired time t = T (with
T > 0). While many individual results on such
time-evolutions are known in the literature [2, 11],
we hope that our concise formalism may help to
consolidate the knowledge on the mathematical
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Combinatorics of chemical reaction systems

Nicolas Behra, Gérard H. E. Duchampb and Karol A. Pensonc

We propose a concise stochastic mechanics framework for chemical reaction systems that allows to formu-
late evolution equations for three general types of data: the probability generating functions, the exponential
moment generating functions and the factorial moment generating functions. This formulation constitutes
an intimate synergy between techniques of statistical physics and of combinatorics. We demonstrate how to
analytically solve the evolution equations for all six elementary types of single-species chemical reactions
by either combinatorial normal-ordering techniques, or, for the binary reactions, by means of Sobolev-
Jacobi orthogonal polynomials. The former set of results in particular highlights the relationship between
infinitesimal generators of stochastic evolution and parametric transformations fo probability distributions.
Moreover, we present exact results for generic single-species non-binary reactions, hinting at a notion of
compositionality of the analytic techniques.
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present in this work an extension of the early work
of Dellbrück [1] on probability generating func-
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stochastic mechanics framework. While the idea
to study chemical reaction systems in terms of
probability generating functions is thus not new and
on the contrary one of the standard techniques of
this field (see e.g. [2] for a historical overview), we
believe that the reformulation of these techniques in
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insights obtained in a recent study of stochastic
graph rewriting systems [4–6], one may add to
this list (iii) the linear operators that implement
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counts on states. It is only through combining this
Ansatz with the standard notions of combinatorial
generating functions that we find the true strengths
of the stochastic mechanics approach: providing
an avenue to obtain exact solutions to dynamical
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in our formulation of evolution equations intrinsic
notions of normal-ordering problems, and indeed
certain semi-linear normal-ordering techniques [7–
10] will prove immensely fruitful in this direction.
Chemists and other practitioners might appreciate
that our solutions not only provide asymptotic
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systems, but on the contrary full information on
the evolution of reaction systems from any initial
state at time t = 0 to any desired time t = T (with
T > 0). While many individual results on such
time-evolutions are known in the literature [2, 11],
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c) decay reaction 1A
t=4���* 0A

0 20 40 60 80 100 1200

0.2

0.4

t = 0.25t = 0.5
t = 0.75

t = 1.0

t = 1.25

N

pr
ob

ab
ili

ty

d) autocatalysis reaction 1A
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e) pair annihilation reaction 2A
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f) catalytic decay reaction 2A
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Fig. 2 Discrete probability distributions for initial state |Y(0)i = |100i and for individual elementary reactions.
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a) 1A a=1/3����* 2A, 0A g=1/3����* 2A, 1A t=1/3����* 0A
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c) 0A b=1/5����* 1A, 0A g=3/5����* 2A, 1A t=1/5����* 0A
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f) distributions for e)

0
50 100 150

0

0.05

0.1

t = 0.25

t = 0.5

t = 1

t = 2
t = 4

t = 16

N

pr
ob

ab
ili

ty

Fig. 3 First three cumulants ci(t) and discrete probability distributions for initial state |Y(0)i = |100i and systems of

non-binary elementary reactions.
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a) Mean number of particles at time t = 1
b) Variance of number of particles at time t = 1

c) Mean number of particles at time t = 4
d) Variance of number of particles at time t = 4

e) Mean number of particles at time t = 16
f) Variance of number of particles at time t = 16

Fig. 4 Ternary parameter dependence plot for a reaction system composed of birth, pair creation and decay

reactions, for initial state |Y(0)i = |100i.
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Motivation

• How do graph transformation systems (GTSs) compare to other types of stochastic systems?

• Is it possible to re-use ideas from statistical physics and combinatorics to tackle GTS
computations?

• What insights may be gained by combinatorial techniques (normal-ordering etc. ) – interesting
even in the case of discrete graphs!

Idea:
Learn from the simplest case of rewriting, i.e. from the theory of chemical reaction systems!

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



Overview

rule algebraic 
framework

conventional
graph transformation

frameworks

analytical combinatorics

theory of CTMCs
& chemcal reaction 

systems

statistical physics 

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



The mathematical “blueprint”:
Heisenberg-Weyl algebras



The mathematical “blueprint”: the Heisenberg-Weyl algebra

• pure state: a pool of n indistinguishable particles

• elementary opertions:
• pick a particle at random and remove it
• add a particle

ñ basic combinatorics:
• n possible ways to remove a particle
• 1 possible way to add a particle

The Heisenberg-Weyl Algebra
HW part

remove a particle

add a particle

69

• pool of n indistinguishable particles

• basic operations:

– pick a particle at random and remove it

– add a particle

• basic combinatorics:

– n possibilities to remove a particle
– 1 possibility to add a particle

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



The mathematical “blueprint”: the Heisenberg-Weyl algebra

• from the theory of bosonic Fock spaces:

|ny p“ pure state of n particles

• Ansatz: encode the elementary operations in terms of
(representations of) the generators of the
Heisenberg-Weyl algebra:

a |ny :“

$
&
%

n |n ´ 1y if n ą 0

0 else

a: |ny :“ |n ` 1y pn ě 0q

• canonical commutation relations:

paa: ´ a:aq |ny “
`
pn ` 1q ´ pnq

˘
|ny “ |ny

ô ra, a:s “ aa: ´ a:a “ 1

The Heisenberg-Weyl Algebra
HW part

remove a particle

add a particle

69

• pool of n indistinguishable particles

• basic operations:

– pick a particle at random and remove it

– add a particle

• basic combinatorics:

– n possibilities to remove a particle
– 1 possibility to add a particle

input state transition

outcome possibility 1

outcome possibility 2

outcome possibility n

…

input state o1 o2 on+ + … +( )transition

(a vector) (a vector)

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



Multi-species variant

• multi-species Heisenberg-Weyl algebra: defined via
generators ai , a

:

j and the canonical commutation
relations

rai , aj s “ 0 “ ra:i , a
:

j s , rai , a
:

j s “ δi,j ,

where i , j P t1, . . . ,Nu (with N the number of species)

• pure states:
|ny ” |n1, . . . , nNy

• canonical representation:

ai |ny :“

$
&
%

ni |n ´∆iy if ni ą 0

0 else

a:i |ny :“ |n `∆iy

Multi-type caseHW part

example for a reaction:

A + B Ñ C

• multi-type Heisenberg-Weyl algebra:

[ai, a
:
j] = δij

• multi-type bosonic Fock space:

|n⃗y ” |n1, n2, . . . y (
ÿ

i

ni ă 8 , ni P Zě0)

• action of the annihilators ai and the creators a:
j :

ai|n⃗y := ni|n⃗ ´ δ⃗iy , a:
i |n⃗y := |n⃗ + δ⃗iy

• interpretation: the individual types (visualized as colors)
are acted upon independently from one another

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



Stochastic transition systems and
continuous time Markov chain theory



The Master equation

• Standard CTMC theory r1s: one way to
describe the CTMC’s dynamics is to give a
probability distribution

|Ψptqy :“
ÿ

SPS
pSptq|Sy

of being in one of the discrete states
(represented by basis vectors |Sy), and
specifying the Master equation (aka
Schrödinger equation)

d
dt
|Ψptqy “ H|Ψptqy ,

where H is the evolution operator.

• How precisely H is determined for a given
system will be intimately related to the
concept of rule algebras in our formalism!

discrete 
state space

set of 
discrete 

transitions

S = {S1, S2, . . .}

T =

⇢
~SI1

⌧1�! ~SO1
, ~SI2

⌧2�! ~SO2
, . . .

�

evolution operator 
H

[1] James R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



The “stochastic mechanics” viewpoint

Benefits:
D a full-blown formalism r2sr3s aka “stochastic
mechanics” r4s for studying CTMCs:

• Observables O are linear operators under
which each pure state is an Eigenstate,

O|Sy “ ωOpSq|Sy .

• Expectation values of observables are
computed by introducing the dual projection
vector

x|Sy :“ 1 @S P S ,

such that for any state probability distribution
|Ψptqy

E|ΨptqypOq ” xOyptq :“ x|O|Ψptqy .

ñ evolution of expectation values of
observables via Master equation:

d
dt
xOyptq “ xOHyptq .

• Additional property of the evolution operator
H:

x|etH
|Ψp0qy !

“ 1 ñ x|H “ 0 ,

i.e. H preserves normalizations.

ñ analogue of the Ehrenfest equation of
quantum mechanics:

d
dt
xOyptq “ xrO,Hsyptq ,

where rA,Bs :“ AB ´ BA is the commutator
[2] Masao Doi. “Second quantization representation for classical many-particle system”. In: Journal of Physics A: Mathematical and General 9.9 (1976), p. 1465

[3] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Stochastic mechanics of graph rewriting”. In: 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2016

[4] John C Baez and Jacob Biamonte. “A course on quantum techniques for stochastic mechanics”. In: s arXiv:1209.3632 (2012)



A first hint at the practical advantages and potential of the framework

Proposition ( r5s, Prop. 3.35)
For A,B P EndKpVq (with V a K-vector space)
and λ a formal variable,

eλABe´λA
“ eadλA B ,

where

adAB :“ rA,Bs “ AB ´ BA , ad0
AB :“ B .

• Application: suppose H is an evolution
operator, and let

λ ¨O ”
ÿ

i

λiOi

denote a formal linear combination of
observables Oi P O.

• Define the moment-generating function
Mpt ;λq of the CTMC as

Mpt ;λq :“
A

eλ¨O
E
ptq ,

whence formally
«
B

n1

Bλ
n1
i1

¨ ¨ ¨
B

nk

Bλ
nk
i1

Mpt ;λq

ff ˇ̌
ˇ̌
λÑ0

“ xOn1
i1
¨ ¨ ¨Onk

ik
yptq .

ñ Formal all-order moment evolution
equation r6sr7s:

d
dt
Mpt ;λq “

Aˇ̌
ˇeλ¨OH

ˇ̌
ˇΨptq

E

“

Aˇ̌
ˇ
´

eλ¨OHe´λ¨O
¯

eλ¨O
ˇ̌
ˇΨptq

E

“

Aˇ̌
ˇ
´

eadλ¨O H
¯

eλ¨O
ˇ̌
ˇΨptq

E
.

[5] Brian C Hall. Lie groups, Lie algebras, and representations: an elementary introduction. Vol. 222. Springer, 2015

[6] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Stochastic mechanics of graph rewriting”. In: 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). 2016

[7] Nicolas Behr, Vincent Danos, and Ilias Garnier. Combinatorial conversion and disassociator dynamics for stochastic rewriting systems (in preparation, « Q1 2018).
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Specializing to discrete graph
rewriting, whence to chemical
reaction systems



An interesting relation: states and observables

• States: so-called number vectors,

|ny ” |n1, . . . , nNy

“ pa:1q
n1 . . . pa:Nq

nN |0, . . . , 0y

• Observables (aka diagonal operators):
linear combinations of the opertors

pa:qk ak
”

Nź

i“1

pa:i q
ki aki

i

(note: rai , a
:

j s “ δi,j1)

• normal-ordering relation (non-trivial part):

ar
i pa

:

i q
s
“

ÿ

mě0

m!

˜
r
m

¸˜
s
m

¸
pa:i q

pr´mqaps´mq
i ,

which has an easy interpretation in terms of
rule-diagrams!

Fact (combinatorics literature!)

pa:qsas
“

sÿ

k“0

s1ps; kqn̂k

s1ps; kq – Stirling numbers of the 1st kind)

n̂i – number operator of species i ,

n̂i :“ a:i ai , n̂i |ny “ ni |ny

ñ the Eigenvalues ni of the number operators n̂i

of a pure state |ny completely characterize
the pure state!

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



Delbrück’s insight: probability generating functions

Bargmann-Fock representation r8s

|ny Ø

Nź

i“1

xni
i

a:i Ø x̂i pmultiplication by xiq

ai Ø B

Bxi
pderivation by xiq

• normal-ordering relation: for all
f ” f px1, . . . , xNq,

´
x̂i
B

Bxj
´ B

Bxj
x̂i

¯
f “ δi,j f

• probability generating function: given a
probability distribution |ψy “

ř
ně0 pn |ny,

|ψy Ø Ppxq :“
ÿ

ně0

pnxn

Delbrück r9s
The master equation for a chemical reaction
system with reactions

i ¨ X
ri,o
ÝÝá o ¨ X

reads in the Bargmann-Fock representation

B

Bt Ppt ; xq “
ÿ

i,o

ri,o

´
px̂qo ´ px̂qi

¯´
B

Bx

¯i
Ppt ; xq

[8] V Fock. “Verallgemeinerung und Lösung der diracschen statistischen Gleichung”. In: Zeitschrift für Physik A Hadrons and Nuclei 49.5 (1928), pp. 339–357; Valentine Bargmann.
“On a Hilbert space of analytic functions and an associated integral transform part I”. In: Communications on pure and applied mathematics 14.3 (1961), pp. 187–214

[9] Max Delbrück. “Statistical fluctuations in autocatalytic reactions”. In: The Journal of Chemical Physics 8.1 (1940), pp. 120–124

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



Aside: three types of generating functions

• probability generating function: given a probability distribution |ψy “
ř

ně0 pn |ny,

|ψy Ø Ppxq :“
ÿ

ně0

pnxn

• (exponential) moment generating function: (with formal parameters λ ” pλ1, . . . , λNq)

Mpt ;λq :“
´

eλ¨nPpt ; xq
¯ ˇ̌
ˇ̌
xÑ1

pni :“ x̂i
B

Bxi
q

• (exponential) factorial moment generating function: (with formal parameters
ν ” pν1, . . . , νNq)

Fpt ; νq :“

¨
˝ÿ

kě0

νk

k!
x̂k

´
B

Bx

¯k
Ppt ; xq

˛
‚
ˇ̌
ˇ̌
xÑ1

• Well-known fact: (see e.g. r10s)

Mpt ;λq “ Ppt ; eλq , Fpt ; νq “ Ppt ; ν ` 1q “Mpt ; lnpν ` 1qq

[10] Nicolas Behr, Gerard HE Duchamp, and Karol A Penson. “Combinatorics of chemical reaction systems”. In: arXiv:1712.06575 (2017)

Nicolas Behr (IRIF Université Paris Diderot), February 5th 2018



“Bonus result”: generating function evolution equations

From r11s: B

BtM “ DM, B
BtF “ dF

Table 2 Contributions H(i,o) to the evolution operator H, D(i,o) to the differential operator D ⌘ D(l ,∂l ) and d(i,o) to

d ⌘ d(n ,∂n) of individual multi-species chemical reactions i ·A
ri,o��* o ·A

Parameters H(i,o)/ri,o D(i,o)/ri,o d(i,o)/ri,o

(o, i)
�
a† o �a† i

�
ai

�
el ·(o�i)�1

�
Âi
`=0 S1(i,`)

⇣
∂

∂l

⌘` �
(n +1)o � (n +1)i

�⇣ ∂
∂n

⌘i

(d a +d b ,0)
⇣

a†
a +a†

b �1
⌘ ⇣

ela+lb �1
⌘

nanb +na +nb

(d a ,0) a†
a �1 ela �1 na

(0,d g)
⇣

1�a†
g

⌘
ag

�
e�lg �1

� ∂
∂lg

�ng
∂

∂ng

(d a ,d b )
⇣

a†
a �a†

b

⌘
ab

⇣
ela�lb �1

⌘
∂

∂lb
(na �nb ) ∂

∂nb

(d a +d b ,d g)
⇣

a†
aa†

b �a†
g

⌘
ag

⇣
ela+lb�lg �1

⌘
∂

∂lg
(nanb +na +nb �ng)

∂
∂ng

(0,d b +d g)
⇣

1�a†
b a†

g

⌘
ab ag

⇣
e�lb�lg �1

⌘⇣
∂ 2

∂lb ∂lg
�db ,g

∂
∂lg

⌘
�
�
nb ng +nb +ng

� ∂ 2

∂nb ∂ng

(d a ,d b +d g)
⇣

a†
a �a†

b a†
g

⌘
ab ag

⇣
ela�lb�lg �1

⌘⇣
∂ 2

∂lb ∂lg
�db ,g

∂
∂lg

⌘ �
na �nb ng �nb �ng

� ∂ 2

∂nb ∂ng

Therefore, the only reaction systems for which we
have first order moment closure are semi-linear re-
action systems, i.e. systems for which for all (i,o)
with rates ri,o > 0 we have that

Â
j2S

i j  1 . (63)

The fact that semi-linear reaction (and branch-
ing) systems are the only systems with first or-
der moment closure already indicates that they are
somewhat simpler in their dynamical structure than
generic systems. In Section 6 we will demonstrate
in fact that all of them can be solved analytically. In
view of practical applications, the following no-go
corollary is important to note:

Corollary 1. The factorial moment evolution equa-
tion (61) entails that there are no factorial moment
closures beyond semi-linear reaction systems. Be-
cause of the relationship between moments of the
number operators and the factorial moments as pre-
sented in Theorem 2, the same statement holds true
for the moments of the number operators.

In other words, we will in particular not be able
to rely on a simple matrix exponential in order to

solve the evolution equations for generic reaction
systems. Nonetheless, there still exist interesting
cases in which one encounters a form of a higher-
order factorial moment closure, namely when we
consider catalytic reaction systems (or other sys-
tems in which the numbers of certain types of par-
ticles are conserved): suppose that the reaction sys-
tem leaves the number ni of a certain species of par-
ticles constrained in the range 0  ni  Ni when
initialized on a state |Y(0)i that satisfies this con-
straint. Then the factorial moments of n̂i of orders
greater than Ni will vanish identically, which may
in certain cases provide some interesting computa-
tion strategies. We refer the interested readers to the
standard literature (such as the review paper [2]) for
explicit examples and further technical details.

6 Analytical solution strategies for
probability generating functions

For the material presented in this section, it will
prove most convenient to work in the Bargmann-
Fock representation of the Heisenberg-Weyl alge-
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A seminal result on normal-ordering techniques

Theorem (Duchamp, Penson et al. r12s)
Let H be a semi-linear operator (in the Bargmann-Fock basis),

H “ vpx̂q `
Nÿ

i“0

qipx̂q Bxi ,

with qipx̂q and vpx̂q some functions in the operators x̂i . Let F p0; xq be an entire function in the
indeterminates xi . Define the formal power series (with formal variable λ)

F pλ; xq :“ eλH F p0; xq .

Then F pλ; xq may be expressed in closed form as follows:

F pλ; xq “ gpλ; xqF
`
0; T pλ; xq

˘
,

$
&
%

B

Bλ
Tipλ; xq “ qipT pλ; xqq , Tip0; xq “ xi

ln gpλ; xq “
şλ

0 vpT pκ; xqqdκ

Moreover, eλH induces a one-parameter group of transformations due to

T pλ` µ; xq “ T pµ; T pλ; xqq

gpλ` µ; xq “ gpλ; xqgpµ; T pλ; xqq ,

[12] P Blasiak et al. “Boson normal ordering via substitutions and Sheffer-Type Polynomials”. In: Physics Letters A 338.2 (2005), pp. 108–116



Result: exact actions of evolution semi-groups

From r13s:

Table 3 Closed-form results for the time-dependent probability generating functions P(t;x) for reaction systems of N species with a single
non-binary elementary reaction; here, S1, . . . ,SN denote the N different species, while Di (i 2 {1, . . . ,N} denotes the N-vector with coordinates
(Di) = di, j.

reaction H = q(x) ·∂x + v(x) P(t;x) = g(t;x)P(0;T (t;x) comments

/0 a
* Si a (x̂i �1) Pois(at;xi) ·P(0;x) Pois(µ;x) := eµ(x�1)

/0 a
* Si +S j a (x̂ix̂ j �1)

�
eat(xix j�1)

�
·P(0;x) (Poisson distribution, 0  µ < •)

Si
a
* /0 a (1� x̂i)

∂
∂xi

P(0;x+(�xi +Bern(e�at ;xi))Di) Bern(µ;x) := (1�µ)+ xµ

Si
a
* S j (i 6= j) a (x̂ j � x̂i)

∂
∂xi

P(0;x+(�xi +(x j(1� e�at)+ xie�at)Di) (Bernoulli distribution, 0  µ  1)

Si
a
* 2Si a

�
x̂2

i � x̂i
� ∂

∂xi
P(0;x+(�xi +Geom(e�at ;xi))Di) Geom(µ;x) := xµ

1�x(1�µ)

Si
a
* Si +S j (i 6= j) a (x̂ix̂ j � x̂i)

∂
∂xi

P(0;x+(�xi + xiPois(at;x j)))Di) (Geometric distribution, 0 < µ  1)

Si
a
* S j +Sk (i 6= j 6= k) a (x̂ jx̂k � x̂i)

∂
∂xi

P(0;x+(�xi + x jxk(1� e�at)+ xie�at)Di)
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Elementary nonary reactions – plots r13s

a) birth reaction 0A
b=50����* 1A
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b) pair creation reaction 0A
g=25���* 2A
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c) decay reaction 1A t=4���* 0A
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d) autocatalysis reaction 1A
a=

1
2���* 2A
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e) pair annihilation reaction 2A
k=

1
40����* 0A
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f) catalytic decay reaction 2A
l=

1
10����* 1A
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Fig. 2 Discrete probability distributions for initial state |Y(0)i = |100i and for individual elementary reactions.
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Elementary unary reactions – plots r13s

a) birth reaction 0A
b=50����* 1A
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b) pair creation reaction 0A
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c) decay reaction 1A t=4���* 0A
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e) pair annihilation reaction 2A
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f) catalytic decay reaction 2A
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Fig. 2 Discrete probability distributions for initial state |Y(0)i = |100i and for individual elementary reactions.
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A hint of compositionality r13s

a) 1A
a=1/3����* 2A, 0A

g=1/3����* 2A, 1A
t=1/3����* 0A
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c) 0A
b=1/5����* 1A, 0A

g=3/5����* 2A, 1A
t=1/5����* 0A
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e) 0A 0.4��* 1A, 0A 0.2��* 2A, 1A 0.3��* 0A, 1A 0.1��* 2A
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Fig. 3 First three cumulants ci(t) and discrete probability distributions for initial state |Y(0)i = |100i and systems of
non-binary elementary reactions.
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A hint of compositionality r13s
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c) 0A
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Fig. 3 First three cumulants ci(t) and discrete probability distributions for initial state |Y(0)i = |100i and systems of
non-binary elementary reactions.
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A hint of compositionality r13s

Example: ternary parameter dependence plot for a reaction system composed of birth, pair
creation and decay reactions, for initial state |Ψp0qy “ |100y

a) Mean number of particles at time t = 1 b) Variance of number of particles at time t = 1

c) Mean number of particles at time t = 4 d) Variance of number of particles at time t = 4

e) Mean number of particles at time t = 16 f) Variance of number of particles at time t = 16

Fig. 4 Ternary parameter dependence plot for a reaction system composed of birth, pair creation and decay
reactions, for initial state |Y(0)i = |100i.
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Binary reactions and Sobolev-Jacobi orthogonal polynomials

• The precise technical details are somewhat intricate, see the our paper!

• The basic Ansatz is the one of McQuarrie r14s, BUT the original Ansatz had a mathematical
error. . .

• Problem: McQuarrie suggested to use the Jacobi polynomials as eigenfunction basis of the
infinitesimal generator, yet for the range of parameters of interest, these are ill-posed.

• Our solution: the mathematical problem has been successfully treated in the 1990’s by Kwon &
Littlejohn r15s, who introduced so-called Sobolev-Jacobi polynomials.

• Aside: This is related normal-ordering, too! (But one of a new kind. . . )

[14] Donald A McQuarrie. “Kinetics of small systems. I”. In: The journal of chemical physics 38.2 (1963), pp. 433–436; Donald A McQuarrie, CJ Jachimowski, and ME Russell.
“Kinetics of small systems. II”. In: The Journal of Chemical Physics 40.10 (1964), pp. 2914–2921; Donald A McQuarrie. “Stochastic approach to chemical kinetics”. In: Journal
of applied probability 4.3 (1967), pp. 413–478

[15] KH Kwon, LL Littlejohn, and BH Yoo. “Characterizations of orthogonal polynomials satisfying differential equations”. In: SIAM Journal on Mathematical Analysis 25.3 (1994),
pp. 976–990; Kil H Kwon, LL Littlejohn, and BH Yoo. “New characterizations of classical orthogonal polynomials”. In: Indagationes Mathematicae 7.2 (1996), pp. 199–213; Kil H
Kwon and Lance L Littlejohn. “Classification of classical orthogonal polynomials”. In: J. Korean Math. Soc 34.4 (1997), pp. 973–1008; Kil H Kwon and LL Littlejohn. “Sobolev
orthogonal polynomials and second-order differential equations”. In: The Rocky Mountain journal of mathematics (1998), pp. 547–594
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Elementary binary reactions – plots r15s

a) birth reaction 0A
b=50����* 1A
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b) pair creation reaction 0A
g=25���* 2A
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c) decay reaction 1A t=4���* 0A
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d) autocatalysis reaction 1A
a=

1
2���* 2A
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e) pair annihilation reaction 2A
k=

1
40����* 0A
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f) catalytic decay reaction 2A
l=

1
10����* 1A
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Fig. 2 Discrete probability distributions for initial state |Y(0)i = |100i and for individual elementary reactions.
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“Bonus result”: Which reactions are first-order moment-closed?

Theorem r15s
The evolution equations for the factorial moments fnptq read

d
dt fnptq “

ÿ

i,o

ri,o

ÿ

k

φk pn; i , oqfn`i´k ptq

φk pn; i , oq “
„
poqk ´ piqk

˜
n
k

¸
.

Here, we have made use of the standard conventions
`x

y

˘
“ 0 and pxqy “ 0 whenever y ą x .

Specializing to n “ ∆α, i.e. to f∆α denoting the first moment of the number vector n̂α, one obtains
the evolution equations for the first moments as

d
dt

f∆αptq “
ÿ

i,o

ri,opoα ´ iαqfiptq .

Therefore, the only reaction systems for which we have first order moment closure are
semi-linear reaction systems, i.e. systems for which for all pi , oq with rates ri,o ą 0 we have that

ÿ

jPS

ij ď 1 .
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