Computer Science Logic 2018

Birmingham, United Kingdom
4—7 September

L/ \ A P
\ =

Rule Algebras for Adhesive Categories

Nicolas Behr (IRIF, Université Paris 7, France)

Joint work with Pawet Sobocinski (ECS, University of Southampton, UK)

DIDEROT

pppppp

PARIS

, ° s INSTITUT
DE RECHERCHE

EN INFORMATIQUE
MARIE CURIE ACTIONS FONDAMENTALE

Motivation

» formal power series:

f@) R[] = fx) = fix" (withf, eRforallne Z=)

n=0

» two natural linear operators: x and o,

0 ifn=0

3:R[[x]] = R[[x]] : &" = &', 6, R[[x]] = R[[x]] : &" — {nx”_l M

Motivation

» formal power series:

f@) R[] = fx) = fix" (withf, eRforallne Z=)

n=0

» two natural linear operators: x and o,

0 ifn=0

3:R[[x]] = R[[x]] : &" = &', 6, R[[x]] = R[[x]] : &" — {nx”_l M

« forallp e Z.o and f(x), g(x) € R[[x]], “of course...”

& (f()g(x) = Z (’;) (@) (27

Motivation

» formal power series:

f@) R[] = fx) = fix" (withf, eRforallne Z=)

n=0

» two natural linear operators: x and o,

0 ifn=0

3:R[[x]] = R[[x]] : &" = &', 6, R[[x]] = R[[x]] : &" — {nx”_l M

« forallp e Z.o and f(x), g(x) € R[[x]], “of course...”

& (f()g(x) = Z (’;) (@) (27

= non-trivial “normal-ordering” type operator relation: (for p,q € Z>))

min(p,q)
a3 =Y (i) (Z)fﬂ—"af;"‘
k=0

Motivation

* non-trivial “normal-ordering” type operator relation: (for p,q € Z>)

min(p,q) D q . . min(p,q) 1 p' q' . .
axt = k! R = = (:) < :) T
’];) k) \k];) K\ (p—k)! (g —k)!

of ways to choose k objects from pools of p and ¢ particles, disregarding order

= WHY?
somewhat surprising answer:

Because x and 0, are the canonical representations of certain rule algebra elements associated to
(discrete) graph rewriting rules!

Plan

The main construction:

* Double-Pushout (DPO) rewriting in adhesive categories
* From DPO rewriting to DPO rule algebras
» The framework: algebraic compositions, associativity, canonical representations. . .

Application examples:

» formal power series and the Heisenberg-Weyl algebra
» combinatorics
« stochastic mechanics of continuous-time Markov chains

Plan

The main construction:

» Double-Pushout (DPO) rewriting in adhesive categories
» From DPO rewriting to DPO rule algebras
» The framework: algebraic compositions, associativity, canonical representations. . .

Application examples:

» formal power series and the Heisenberg-Weyl algebra
+ combinatorics

« stochastic mechanics of continuous-time Markov chains

Rule-algebra project “history” the first version of the rule algebra concept [1] (presented at
LiCS’16, joint work with V. Danos and I. Garnier) had been based on relation-algebraic structures
and covered the cases of rule algebras for rewriting of graphs; the new version extends this to
rewriting of adhesive categories

[1] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer
Science (LICS 2016) (2016), pp. 46-55

DPO rewriting and rule algebras

Background: adhesive categories

Adhesive categories (cf. [2], Def. 3.1)
A category C is said to be adhesive if

(i) C has pushouts along monomorphisms,
(i) C has pullbacks, and if
(iii) pushouts along monomorphisms are van Kampen (VK) squares.

+ Examples [2]:
+ Set, the category of (finite) sets and set functions
» Graph, the category of (finite) directed multigraphs and graph homomorphisms (and also col-
ored/typed graphs, attributed graphs, hypergraphs,...)
« any presheaf topos and any elementary topos [3]

» Note: One might further generalize by considering quasi-adhesive categories (see [2], [4]).

[2] Stephen Lack and Pawet Sobociriski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545
[3] Stephen Lack and Pawet Sobocinski. “Toposes are adhesive”. In: Graph Transformations, Third International Conference, (ICGT 2006). Vol. 4178. LNCS. Springer, 2006,
pp. 184-198

[4] Richard Garner and Stephen Lack. “On the axioms for adhesive and quasiadhesive categories”. In: Theor. App. Categories 27.3 (2012), pp. 27-46

Brief comments on abstract category-theoretical structures:

* pushouts along monomorphisms in the category Set:

. A — intersection of Band Cin D
Interpretation:)
\ / D — unionof Band C along A

* pullbacks along monomorphisms in the category Set:

B/é\c
N

Interpretation: A — intersection of Band Cin D

Brief comments on abstract category-theoretical structures:

+ from [5]:

Definition 1. A van Kampen square is a pushout di- m’ c
agram as in Fig 1 which satisfies the following condi-

N A/ c B/

tion: s} " /

— for any commutative cube, as illustrated, of which a " l b
Fig 1 forms the bottom face and the back faces are m - C \Ji
pullbacks: the front faces are pullbacks iff the top 4 " 4 B
face is a pushout. N) _

The following lemma shows that, in categories with pushouts and pullbacks,
van Kampen squares paste together to give van Kampen squares.

[5] Stephen Lack and Pawet Sobocinski. “Toposes are adhesive”. In: Graph Transformations, Third International Conference, (ICGT 2006). Vol. 4178. LNCS. Springer, 2006,
pp. 184-198

Brief comments on abstract category-theoretical structures:

from [6]: in an adhesive category C, for every object Z € ob(C) one may define the subobject lattice
Sub(Z) via defining a preorder on the monomorphisms x : X — Z (with x < y if there exists some
monomorphism i : X — Y such thaty = iox)

Corollary 5.2 of [6]

The lattice Sub(Z) is distributive.

Proof: It is easy to verify that the front and back faces of the cube below are pullbacks. Because the
bottom face is a pushout, we use adhesivity in order to conclude that the top face is a pushout, which
in turn impliesthat An (BUC) = (AnB)u (An C). o

ANBNC

— ‘ T
ANB ANC
\AH(BUC)(J//

[/BHC
B

\BUC/C

[6] Stephen Lack and Pawet Sobociriski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545

DPO rewriting

Double-Pushout (DPO) rewriting in an adhesive category (cf. [7], Def. 7.1)

A span p of morphisms
L<LKSR
is called a production. p is said to be left linear if / is a monomorphism, and linear if both / and r are

monomorphisms. We denote the set of linear productions by Lin(C). We will also frequently make
use of the alternative notation Z 2~ R where p = (L <~ K 5 R) € Lin(C).

Notes:

- A homomorphism of productions p — p’ consists of arrows, L — L', K — K’ and R — R’, such
that the obvious diagram commutes.

* A homomorphism is an isomorphism when all of its components are isomorphisms. We do not
distinguish between isomorphic productions.

[7] Stephen Lack and Pawet Sobociriski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545

DPO rewriting

Admissible matches (cf. [8], Def. 7.2)
Given a production p, a match of p in an object C € 0b(C) is a morphism m : L — C. A match is said to

satisfy the gluing condition if there exists an object E and morphisms g : K — Eand v : E — C such
that the square below is a pushout:
l
L «—K
|

K \/

C «~"-E

More concisely, the gluing condition holds if there is a pushout complement of C <& L LK

[8] Stephen Lack and Pawet Sobociriski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545

DPO rewriting

Set of admissible matches and linear productions (cf. [9], Def. 7.3)

Let C be an adhesive category, and denote by Lin(C) the set of linear productions on C. Given an
object C € C and a linear production p € Lin(C), we denote the set of admissible matches M, (C) as
the set of monomorphisms m : L — C for which m satisfies the gluing condition. As a consequence,
there exist objects and morphisms such that in the diagram below both squares are pushouts:

L <L S g "L R

[r o
m 'k o !
\ Sy

We write p,,(C) := D for the object “produced” by the above diagram. The process is called derivation
of C along production p and admissible match m, and denoted C = p,,(C).
p,m

[9] Stephen Lack and Pawet Sobociriski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545

Concurrent compositions of (linear) rules

Convention: unless mentioned otherwise, all arrows are assumed to be monomorphisms.

Dependency relations

For rules p1, p> € Lin(C), a dependency relation consists of an object X;, and a span of monomor-
phisms m : R, <~ X1, 2 L,, s.t. K12, K21 and morphisms illustrated below exist, where the cospan
R — Y12 < L, is the pushout of m, and the two indicated regions are also pushouts; i.e. there exist
pushouts complements of K| - R, — Y1, and K, 2 L, — Yis.

! !
g h

Ky » Yo < Kz
A ¢ . N A
Ki —— R ~——— X —/ L ~——— K

1 2 12

Intuitively, the existence of the left and right pushout diagrams amounts to the two rules agreeing on
the overlap specified by X1,, and amenable to being executed concurrently. We refer to such m as an
admissible match of p, in p; and denote the set of these by p, I- pi.

Concurrent compositions of (linear) rules

+ Algebraically speaking, given pi,p, and m € p, |- p;, we can consider “concurrent execution”
to be an operation that composes p; and p, “along” m to obtain a rule p» I<“p.. To obtain p» Tpl,
we extend the dependency relation by taking two further pushouts (marked with dotted arrows)
and take a pullback (marked with dashed arrows):

. - Zin - ,
N DR
4 o T ’
L, « K> Yio < Ky 7> Ry
L T / \ T CE
L K, K> R

* Now we define the composite of p; with p, along m as

m 21 2 ! /
prapri=(Lio<>Zo<>Rp), z:=Loy, n:=roy.

Concurrent compositions of (linear) rules

The following well-known result shows that composition is compatible with application:
Concurrency Theorem (cf. [10], Thm. 7.11)
Let p, g € Lin(C) be two linear rules and C € ob(C) an object.

» Given a two-step sequence of derivations

€ = pn(C) = qu(pn(C)),
there exists a composite rule r = p, 3p1 for unique d € ¢ |- p, and a unique admissible match
e € M,(C), such that C = r.(C) and r.(C) = g.(pm(C)).

» Given a dependency relationd € g I p, r = p» < p1 and an admissible match ¢ € M,(C),
there exists a unique pair of admissible matches m € M,(C) and n € M, (p.(C)) such that
C ﬁ pu(C) ﬁ 4n(pm(C)) With g (pm(C)) = 1(C).

[10] Stephen Lack and Pawet Sobociriski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511-545

Technical obstacle: proving associativity (NEW!)

We now show that concurrent composition of linear rules is, in a natural sense, associative:

Associativity Theorem (key result of our paper)

The composition operation . « . is associative in the following sense: given linear rules
p1,p2,p3 € Lin(C)
there exists a bijective correspondence between pairs of admissible matches
my €py I-p1 and mz € ps - (P2 Ry Pl))
and pairs of admissible matches

my3
mz € p3 |- p2 and mep)1 € (pa < pz) = p1

such that
m3(21) myp msp m(32)1
p3 < (pz < pl) = (ps < pz) < pr.

On our proof of associativity

+ Since DPO derivations are symmetric, it suffices to show one side of the correspondence. Our
proof is constructive, demonstrating how, given a pair of admissible matches

(m21 € p2 I p1 and m3(21) € p3 I (Pz ¢ Pl)))

one obtains ms; € p; I p2 and ms;), € (p3 s p2) I+ p1 leading to the same two-step concurrent
composition.

On our proof of associativity

+ Since DPO derivations are symmetric, it suffices to show one side of the correspondence. Our
proof is constructive, demonstrating how, given a pair of admissible matches

(m21 € p2 I p1r and m3(21) € p3 I (Pz ¢ Pl)))

one obtains ms; € p3 I p» and ms); € (p3 & p2) I+ p1 leading to the same two-step concurrent
composition.

» We begin with p, "¢ p1, ps and the dependency relation ms(,yy, illustrated below.

va

Yz ——————— K2 —— Ruaps
Ls

X2)s K Ry

Ko

: . / e
L K, Ry X1o L, (

Ky Ry

On our proof of associativity

+ By Lemma 3.2, since the match m;(,)) is by assumption admissible, we can find a pushout
complement and pushout to extend the above diagram as follows,

Yies) Ks2)

and again as below.

Ly 23 K(23)

On our proof of associativity

* In the next step, we compute X»; as the evident pullback. Then we further extend the diagram via
repeating the components of rule ps.

A AN

Xog Ks R

Now we push out R, and L; along X»3, obtaining Y23 — Y23 from the universal property.

A

On our proof of associativity

* Next, we compute K3, by pulling back Y>3 and K23y along Y(12);. We obtain K3 — K3, from the
universal property. To obtain the other morphisms, push out K3, and R; along K.

On our proof of associativity

Ks» Ras

» We need to establish that the newly constructed front face on the left is a pushout. To do so, let
us consider the cube on the left in isolation.

Yoy ~————— Ky

el I /‘

The rear face is a pushout, and therefore also a pullback. The bottom face is trivially both a
pushout and a pullback. Pasting these two pushouts together yields a pushout, and since the top
face—by construction—is a pullback, the front face is a pushout by Lemma 2.4: hence all faces of
the cube, apart from the left and the right, are both pushouts and pullbacks.

On our proof of associativity

+ We take advantage of the symmetry involved, and obtain two further pushouts as front faces in
the following. Moreover, the two new upper faces are pushouts also.

N\ /

Log e

The next step is a trivial repetition of rule p,: the new upper faces are both pushouts since they
both arise as two pushouts pasted together.

A anr=a

K

Ly

On our proof of associativity

* We now obtain X(;5)3 by pulling back R, and L»; along Y3, the remaining monomorphism
X12 — X(12)3 follows from the universal property.

Xi2)

On our proof of associativity

+ The final step consists in proving that the cospan R, — Y;(»3) < L3 is the pushout of the span
Ri — X3 — La3. This proof requires a somewhat lengthy diagram chase presented in the
appendix of our paper. ..

Sag = PB(K3(12) = Yii2)s < La)

Tys = PB(Ky — Ris « X(12)3)

Vag = PB(Kas — Yas + La)

Was = PB(Ky — Ry < Xa3)

On our proof of associativity

+ To conclude, the associativity property manifests itself in the following form, whereby the data
provided along the path highlighted in orange below permits to uniquely compute the data provided
along the path highlighted in blue (with both sets of overlaps computing the same “triple composite”

production):

Yi(2s) K302 Yaz)s Kazs R2)s

T A R AV
[

Yip «— Ky —/— R Xaz)s -\— Lz —

| ,/ | 1 7

2 2 2 Xos 3 3

Kz —|— R3

From associativity of concurrent derivations to rule algebras

* non-determinacy in DPO rewriting: each linear rule generically possesses more than one
admissible match into a given object

= need a structure to carry this non-determinism!

One interesting possibility (motivated by the physics literature)

» Each linear rule is lifted to an element of an abstract vector space.

« Concurrent composition of linear rules is lifted to a bilinear multiplication operation on this
abstract vector space, endowing it with the structure of an algebra.

» The action of rules on objects is implemented by mapping each linear rule (seen as an element
of the abstract algebra) to an endomorphism on an abstract vector space whose basis vectors
are in bijection with the objects of the adhesive category.

The DPO rule algebra framework

Definition: rule algebra elements

Let 6 : Lin(C) — Rc be defined as a morphism which maps each linear rule p = (I = 0) € Lin(C)
to a basis vector §(p) of a free R-vector space R¢ = (Rc, +,:). In order to distinguish between
elements of Lin(C) and R¢, we introduce the notation

(0&1)::5(1L0).

We will later refer to R as the R-vector space of rule algebra elements.

The DPO rule algebra framework

Definition: rule algebra composition operation

Define the rule algebra product % as the binary operation
#*Re : Re X Re = Re : (Ri,R2) — Ry *r. Rz,
where for two basis vectors R; = d(p;) encoding the linear rules p; € Lin(C) (i = 1,2),
Ry #Re Ry := Z 0 (p1 ER pz) g
mp€Epl-p2

The definition is extended to arbitrary (finite) linear combinations of basis vectors by bilinearity,
whence for p;, p; € Lin(C) and «;, §; € R,

(Z ;- 5(Pi)> ¥R <Zﬁj : 5(1’/)) =Y (i B)) - (6(pi) *me O(py)) -

2]

We refer to Rc = (Rc, #r() as the rule algebra (of linear DPO-type rewriting rules over the adhesive
category C).

Key theorem of the DPO rule algebra framework

For every adhesive category C, the associated rule algebra R¢ = (Rc, #r.) iS an associative
algebra. If C in addition possesses a strict initial object co € 0b(C), Rc¢ is in addition a unital
algebra, with unit element Ry := (co Z co).

Proof.

Associativity follows immediately from the associativity of the operation . « . proved earlier. The claim
that R is the unit element of the rule algebra R¢ of an adhesive category C with strict initial object
follows directly from the definition of the rule algebra product for Ry #». R and R #r. Rz for R € Rec.
For clarity, we present below the category-theoretic composition calculation that underlies the equation

Ry #r. R=R:
—— K Soss
A// i \\\\\\\\ r
L oo L L K » R
A < "
S AR
%] %] %] %] L K R

Canonical representations of DPO rule algebras

Let C be an adhesive category with a strict initial object cx € 0b(C), and let R be its associated
rule algebra of DPO type. Denote by C the R-vector space of objects of C, whence (with |C)
denoting the basis vector of C associated to an element C € 0b(C))

C := spang ({|C)| C € 0b(C)}) = (C, +,-).

Then the canonical representation pc of Rc is defined as the algebra homomorphism pc : Rc —

End(C), defined to act on each rule algebra element R = §(p) (for p € Lin(C)) as

pe(6(p)) |Cy = {E'"EW“ el B 28
0¢ otherwise,

extended to arbitrary elements of R¢ and of C by linearity.

Note: The fact that pc as given in this definition is indeed a homomorphism of unital associative
algebras is shown in Theorem 4.5 of our paper.

Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules

Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules

« each linear rule p = (I = 0) of a given adhesive category C is mapped to a (basis) element
5(p) = (0 < 1) of a free K-vector space (e.g. for K = Ror K = C)

Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules

« each linear rule p = (I = 0) of a given adhesive category C is mapped to a (basis) element
8(p) = (0 < 1) of a free K-vector space (e.g. for K = Ror K = C)

» an associative composition operation is defined as
¥R Rc X RC i Rc : (Rl,Rz) r—>R1 *Re Rz,
where for two basis vectors R; = d(p;) encoding the linear rules p; € Lin(C) (i = 1,2),

Rl *RC R2 = Z) (p1 m4]2 pz) .

mep;l-p2

The definition is extended to arbitrary (finite) linear combinations of basis vectors by bilinearity.

Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules

« If the adhesive category C in addition possesses a strict initial object, one may define a

canonical representation pc : R¢ — Endk(C) as

Z/neMp(C) |pm(c)> If MP(C) #* 9
0¢ otherwise,

C := spanz ({|C)| C € 0b(C)}) , pe(d(p)) |C) := {

Application examples

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

A first consistency check and interesting special (and arguably simplest) case of rule algebras:

The Heisenberg-Weyl algebra
Let Ro denote the rule algebra of DPO type rewriting for discrete graphs. Then the subalgebra # of
Ry is defined as the algebra whose elementary generators are

=0 &), xi=(@<),

and whose elements are (finite) linear combinations of words in x" and x (with concatenation given
by the rule algebra multiplication #z,) and of the unit element Rz = (@ Z @). The canonical
representation of H is the restriction of the canonical representation of R, to .

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« famous property of the Heisenberg-Weyl algebra: with a' := p(x"), a := p(x), 1 := p(Ro),

[a,a"] := aa" —a'a =1

« realization/interpretation via the DPO rule algebra Ry: consider the following three DPO-type
compositions

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« famous property of the Heisenberg-Weyl algebra: with a := p(x"), a := p(x), 1 := p(Rq),

a,aT i=aa' —dla=1
[

« realization/interpretation via the DPO rule algebra R,: consider the following three DPO-type
compositions

N)

D — FJ —> 0 «—— J —> 06 «— J —» I

(@26) 7 (e Z2)= (e Z0)

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« famous property of the Heisenberg-Weyl algebra: with a := p(x'), a := p(x), 1 := p(Rq),

[a,a"] := aa" —a'a =1

+ realization/interpretation via the DPO rule algebra R,: consider the following three DPO-type
compositions

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« famous property of the Heisenberg-Weyl algebra: with a := p(x'), a := p(x), 1 := p(Ro),

[a,a"] := aa" —a'a =1

+ realization/interpretation via the DPO rule algebra R,: consider the following three DPO-type
compositions

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« famous property of the Heisenberg-Weyl algebra: with a := p(x'), a := p(x), 1 := p(Rq),

[a,a"] := aa" —a'a =1

+ realization/interpretation via the DPO rule algebra R,: consider the following three DPO-type
compositions

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

- famous property of the Heisenberg-Weyl algebra: with a' := p(x"), a := p(x), 1 := p(Ra),

a,d=aa’ —dla=1
[a,

« realization/interpretation via the DPO rule algebra R,: consider the following three DPO-type
compositions

N

0o — J — > J «— J —> J — J —> o

2 (020)° (@)= (s 20

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« it is straightforward to verify that

xT*RO...*ROxT=(oW’”<{i®), x*RO...*R0x=(®éow”)

m times n times

The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

« it is straightforward to verify that

xT*RO...*ROxT=(oW’”<{i®), X*R0~~~*R0x=(®é.w”)

m times n times

» analogously, we find the following:

(x *Rg - ¥Ry x) *R, (xT Ry - - ¥Ry xT> = (g <o ") xr, (0" Z)

m times n times
= 5(An) *r, 5(B.)
_ Z 5 (gﬂ.wm)':‘(.wnﬁg)>
meA; By,
min(m,n)

k=0
of ways to pick k vertices from m and from n vertices disregarding order

Combinatorics of graph ensembles and generators

Notational convention:

For the examples involving rule algebras over adhesive categories of graphs, we will employ a
graphical notation where a span of graph monomorphisms L < K — R is presented as a so-
called rule diagram, with the graph L drawn at the bottom, the graph R drawn at the top, and where
dotted lines indicate the structure of the injective partial morphism encoded in the span.

We define the algebra .A as the one generated [11] by the rule algebra elements

of the DPO rule algebra Rucrapn cONstructed over the adhesive category uGraph of (finite) undirected
multigraphs and homomorphisms thereof, whose strict initial object is the empty graph .

1111 As in the case of the Heisenberg-Weyl algebra, by “generated” we understand that a generic element of A is a finite linear
combination of (finite) words in the generators and of the identity element R4, with concatenation given by the rule algebra
composition.

Combinatorics of graph ensembles and generators
We define the algebra A as the one generated by the rule algebra elements
° °
d:= % .

Cds 3=

|

of the DPO rule algebra Rugraph-

+ commutation relations (with [x,y] := x *g y — y %z x for R = RuGraph)
[67,€+]:d7 [e+7d]:[e*7d]:()'
* Here, the only nontrivial contribution (i.e. the one that renders the first commutator non-zero) may
be computed from the DPO-type composition diagram [12] below and its variant for the admissible

matCh o2 - 2 - o2

Cee---zzz=== @ @ —oooo

= ‘//// T = T
® 0 « L *—o e o > o o
o /7 N P
L ._? H H *—e L

Combinatorics of graph ensembles and generators

e Let
Ey:=pley), D:=p(d), E-:=ple-).
+ Since the rules underlying the operators E+ and D do not modify the number of vertices ny(G)
when applied to a graph state |G), one may consider separately the action of these operators on
the spaces Gy of N-vertex graph states

Combinatorics of graph ensembles and generators

+ Already the action on the next more complicated case, i.e. 3-vertex graph states, has a very
interesting combinatorial structure:
Eile o o)=3je—e & =3]{1,0,0}
Elle o) =3(jes o) +2e—e—e)) =3(]{2,0,0}) +2|{1,1,0}))
Elle o) =3(jess o) +6ecs—e) +2|e=o=0))
=3(]{3,0,0}>+ 6]{2,1,0}> + 2 |{1,1,1}))

E|e o o) =E.[{0,0,0}) = 3> T(n,k)|S(n,k))

« the state |{f,g,h}) withf > g > h > 0and f + g + h = n is the graph state on three vertices
with (in one of the possible presentations of the isomorphism class) f edges between the first two,
g edges between the second two and & edges between the third and the first vertex

* T(n,k) and S(n, k) are given by the entry A286030 of the OEIS database [13]

[13] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A286030.

https://oeis.org/A286030
https://oeis.org/A286030

Combinatorics of graph ensembles and generators

» Already the action on the next more complicated case, i.e. 3-vertex graph states, has a very
interesting combinatorial structure:

Elle o .>EE1\{0,0,0}>=3Z (n, k) |S(n, k))

« the state |{f,g,h}> withf = ¢ > h > 0and f + g + h = n is the graph state on three vertices
with (in one of the possible presentations of the isomorphism class) f edges between the first two,
g edges between the second two and & edges between the third and the first vertex

* T(n,k) and S(n, k) are given by the entry A286030 of the OEIS database [13]
+ Interpretation: each triple S(n, k) encodes the outcome of a game of three players, counting
(without regarding the order of players) the number of wins per player for a total of n games.

Then T(n, k)/3""~" gives the probability that a particular pattern S(n, k) occurs in a random
sample.

[13] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A286030.

https://oeis.org/A286030
https://oeis.org/A286030

Stochastic mechanics of continuous-time Markov chains

Sketch — this would be an entire second talk. ..

Continuous-time Markov chains (CTMCs) from extensive categories

Let C be an extensive category (adhesive with strict initial object). For some (finite!) index set Z, let
{ri}iez be a set of base rates (with r; € R~o), and

{1,- &g 0,-}

i€

be a set of linear rules. Let C be the R-vector space of states (with basis vectors |o) for o € 0b(C)),
and let Prob(C) be the space of sub-probability distributions over C.

Then together with an initial state |¥) € Prob(C), this date defines a continuous-time Markov
chain (CTMC) with time-dependent state |¥(¢)) € Prob(C) for all € Rx, evolution equation

G120 =H|¥())
and evolution operator

H=Yr (p(l,- &K 20— ol K 1,»)) .

i€l

Stochastic mechanics of continuous-time Markov chains

Two more important “ingredients” (of the so-called stochastic mechanics framework):

» “dual projection vector”:
{J:CoR:loy— o= 1r

+ observables: for all monomorphisms K <% M in C, the diagonal linear operators Oj}; defined
as

are observables, in the sense that

O lo) = Ny(o) - o), Ny(o) = # ways to apply the the linear rule M < K <% M to o

Stochastic mechanics of continuous-time Markov chains

The evolution operator H of a CTMC satisfies
{({H=0,

whence the expectation value
(Om(t) :=<| O [T (1))

satisfies the evolution equation

#O(t) =[O, H))(1), [Oy, H] := OH — HO}y .

= together with a property called jump-closure, this permits to calculate stochastic evolutions
from (combinatorial) commutation relations [14], [15], [16]

[14] Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer
Science (LICS 2016) (2016), pp. 46-55

[15] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: arXiv preprint arXiv:1807.00785 (accepted for CSL'18) (2018)

[16] Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems (in preparation)”. In: ()

An illustrative (toy) example

Example: edge “birth-death” systems

Let H be the evolution operator of a CTMC based on the two linear rules of edge creation and edge
annihilation (with base rates ~., x— € Rx¢), whence

H=K}+(E+—0..)+KZ_(E_—0E)

*r—1 [] [] *r—=
E, := %p * ; Oe o = %p , E_ = %p * , O = %p .
[] [] [] [] [] []

An illustrative (toy) example

Example: edge “birth-death” systems
Let H be the evolution operator of a CTMC based on the two linear rules of edge creation and edge
annihilation (with base rates ~., x— € Rx¢), whence

H=K}+(E+—0..)+KZ_(E_—0E)

*— (] [} *—

E, = %p ; Oee = %P , E- = %P ’ , Op := %p

Ng = 10* \

==Ls=3 Time-evolution of (Og)(¢) (the average
kp=1, ky=1

———— . .
Np - 10° / number of edges at time ¢) for initial
100+ =3

TR state [W(0)) = |Gop with Ny = 100
| , vertices.

0.010 0.100 1 10

Conclusion and outlook

Conclusion and outlook

» we have successfully introduced a fully self-consistent framework of DPO rule algebras for
arbitrary adhesive categories

» amongst the main technical results is a novel proof of associativity of DPO rule compositions

« the framework appears to have a vast variety of possible applications in computer science,
combinatorics and beyond

» overview of work in progress:

+ extension to restricted rewriting theories (MSCA project with J. Krivine (IRIF))

» stochastic mechanics and bisimulations for complex systems based on rewriting (with V. Danos and
I. Garnier (ENS Paris))
analytical and enumerative combinatorics of graphical structures and their generators (with N. Zeil-
berger (U Birmingham))

r r©r o T I

Thank you!

Nicolas Behr, Vincent Danos, and llias Garnier. “Combinatorial Conversion and Moment Bisimulation for
Stochastic Rewriting Systems (in preparation)”. In: ().

Nicolas Behr, Vincent Danos, and llias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of
the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016) (2016), pp. 46-55.

Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: arXiv preprint
arXiv:1807.00785 (accepted for CSL'18) (2018).

Richard Garner and Stephen Lack. “On the axioms for adhesive and quasiadhesive categories”. In: Theor.
App. Categories 27.3 (2012), pp. 27—46.

Stephen Lack and Pawet Sobocinski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical
Informatics and Applications 39.3 (2005), pp. 511-545.

B Stephen Lack and Pawet Sobocinski. “Toposes are adhesive”. In: Graph Transformations, Third International
Conference, (ICGT 2006). Vol. 4178. LNCS. Springer, 2006, pp. 184—198.

B OFEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A286030.

https://oeis.org/A286030

	DPO rewriting and rule algebras
	Application examples
	Conclusion and outlook

