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Motivation

• formal power series:

f pxq P Rrrxss :ô f pxq “
ÿ

ně0

fn xn
pwith fn P R for all n P Zě0q

• two natural linear operators: x̂ and Bx

x̂ : Rrrxss Ñ Rrrxss : xn
ÞÑ xn`1 , Bx : Rrrxss Ñ Rrrxss : xn

ÞÑ

$

&

%

0 if n “ 0

n xn´1 if n ą 0

• for all p P Zą0 and f pxq, gpxq P Rrrxss, “of course. . . ”

B
p
x pf pxqgpxqq “

p
ÿ

k“0

˜

p
k

¸

´

B
k
x f pxq

¯´

B
p´k
x gpxq

¯

ñ non-trivial “normal-ordering” type operator relation: (for p, q P Zě0)

B
p
x x̂q
“

minpp,qq
ÿ

k“0

k!

˜

p
k

¸˜

q
k

¸

x̂q´k
B

p´k
x
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Motivation

• non-trivial “normal-ordering” type operator relation: (for p, q P Zě0)

B
p
x x̂q
“

minpp,qq
ÿ

k“0

k!

˜

p
k

¸˜

q
k

¸

x̂q´k
B

p´k
x “

minpp,qq
ÿ

k“0

1
k!

ˆ

p!

pp´ kq!

˙ˆ

q!

pq´ kq!

˙

# of ways to choose k objects from pools of p and q particles, disregarding order

x̂q´k
B

p´k
x

ñ WHY?

somewhat surprising answer:
Because x̂ and Bx are the canonical representations of certain rule algebra elements associated to
(discrete) graph rewriting rules!
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Plan

The main construction:

• Double-Pushout (DPO) rewriting in adhesive categories

• From DPO rewriting to DPO rule algebras

• The framework: algebraic compositions, associativity, canonical representations. . .

Application examples:

• formal power series and the Heisenberg-Weyl algebra

• combinatorics

• stochastic mechanics of continuous-time Markov chains
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Plan

The main construction:

• Double-Pushout (DPO) rewriting in adhesive categories

• From DPO rewriting to DPO rule algebras

• The framework: algebraic compositions, associativity, canonical representations. . .

Application examples:

• formal power series and the Heisenberg-Weyl algebra

• combinatorics

• stochastic mechanics of continuous-time Markov chains

Rule-algebra project “history” the first version of the rule algebra concept r1s (presented at
LiCS’16, joint work with V. Danos and I. Garnier) had been based on relation-algebraic structures
and covered the cases of rule algebras for rewriting of graphs; the new version extends this to
rewriting of adhesive categories

[1] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer
Science (LICS 2016) (2016), pp. 46–55
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DPO rewriting and rule algebras



Background: adhesive categories

Adhesive categories (cf. r2s, Def. 3.1)
A category C is said to be adhesive if

(i) C has pushouts along monomorphisms,

(ii) C has pullbacks, and if

(iii) pushouts along monomorphisms are van Kampen (VK) squares.

• Examples r2s:
• Set, the category of (finite) sets and set functions
• Graph, the category of (finite) directed multigraphs and graph homomorphisms (and also col-

ored/typed graphs, attributed graphs, hypergraphs,. . . )
• any presheaf topos and any elementary topos r3s

• Note: One might further generalize by considering quasi-adhesive categories (see r2s, r4s).

[2] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545

[3] Stephen Lack and Paweł Sobociński. “Toposes are adhesive”. In: Graph Transformations, Third International Conference, (ICGT 2006). Vol. 4178. LNCS. Springer, 2006,
pp. 184–198

[4] Richard Garner and Stephen Lack. “On the axioms for adhesive and quasiadhesive categories”. In: Theor. App. Categories 27.3 (2012), pp. 27–46
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Brief comments on abstract category-theoretical structures:

• pushouts along monomorphisms in the category Set:

A

B C

D

^

Interpretation:
A ´ intersection of B and C in D
D ´ union of B and C along A

• pullbacks along monomorphisms in the category Set:

A

B C

D

^

Interpretation: A ´ intersection of B and C in D
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Brief comments on abstract category-theoretical structures:

• from r5s:

Definition 1. A van Kampen square is a pushout di-
agram as in Fig 1 which satisfies the following condi-
tion:

– for any commutative cube, as illustrated, of which
Fig 1 forms the bottom face and the back faces are
pullbacks: the front faces are pullbacks i↵ the top
face is a pushout.

C 0
m0

ttiiiiiiiii f 0

%%KKK

c

✏✏

A0

a

✏✏

g0 %%KKK
B0

b

✏✏

n0ttiiiiiiiii

D0

d
✏✏

Cm
iiii

ttiiii
f

%%KKK
K

A
g %%KKK
K B

nttiiiiiiiii

D

The following lemma shows that, in categories with pushouts and pullbacks,
van Kampen squares paste together to give van Kampen squares.

Lemma 2. Consider the illustrated commutative diagram
in a category with pushouts and pullbacks. If (1) and (2)
are van Kampen then so is (1)+(2).

·
(1)

//

✏✏

·
(2)

✏✏

// ·

✏✏· // · // ·

Proof. Straightforward; in order to show that the combined pushout is stable
under pullback it su�ces to break up a cube into two cubes, using the existence
of pullbacks. Conversely, a cube with its top face a pushout, can be split into
two using the existence of pullbacks and pushouts. ut

We shall now recall an equivalent definition of van Kampen squares which
will be useful for the purposes of this paper. The reader is referred to [12] for
the proof that the definitions are equivalent. The alternative definition is stated
by saying that a certain functor, induced by the diagram in Fig 1, is required to
be an equivalence of categories. We begin by defining the codomain category of
the functor.

Definition 3. Let C/A ⇥C/C C/B denote the category
with objects commutative diagrams of pullbacks, as illus-
trated, and arrows the obvious morphisms between such di-
agrams.

A0

a
✏✏

C 0m0
oo f 0

//

c
✏✏

B0

b
✏✏

A Cm
oo

f
// B

For a morphism u : U ! V we shall write u⇤ : C/V ! C/U for the functor
given by pulling back along u. Referring to Fig 1, the functors n⇤ and g⇤ induce
a functor

Pb : C/D ! C/A ⇥C/C C/B.

Using the functor Pb, we can define the property of square (1) being van
Kampen as follows:

Definition 4. The pushout diagram of Fig 1 is said to be van Kampen whenever
one of the following equivalent conditions holds:

(i) Pb is an equivalence of categories;

4

[5] Stephen Lack and Paweł Sobociński. “Toposes are adhesive”. In: Graph Transformations, Third International Conference, (ICGT 2006). Vol. 4178. LNCS. Springer, 2006,
pp. 184–198
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Brief comments on abstract category-theoretical structures:

from r6s: in an adhesive category C, for every object Z P obpCq one may define the subobject lattice
SubpZq via defining a preorder on the monomorphisms x : X ãÑ Z (with x ă y if there exists some
monomorphism i : X ãÑ Y such that y “ i ˝ x)

Corollary 5.2 of r6s
The lattice SubpZq is distributive.
Proof: It is easy to verify that the front and back faces of the cube below are pullbacks. Because the
bottom face is a pushout, we use adhesivity in order to conclude that the top face is a pushout, which
in turn implies that AX pBY Cq “ pAX Bq Y pAX Cq. ˝

TITLE WILL BE SET BY THE PUBLISHER 17

in C. Let c :C! Z be the unique map satisfying cu= a and cv= b. We shall show that c
is a monomorphism, and so that C is the coproduct A[B in Sub(Z) of A and B. Suppose
then that f ,g : K!C satisfy c f = cg. Form the following pullbacks

L1
f1

✏✏

l1
// K

f
✏✏

L2
l2

oo

f2
✏✏

A u
// C Bv

oo

M1
g1

✏✏

m1
// K

g
✏✏

M2
m2

oo

g2
✏✏

A u
// C Bv

oo

N11
m11

//

l11
✏✏

M1
m1

✏✏

N12
l12

✏✏

m12
oo

L1
l1

// K L2
l2

oo

N21

l21
OO

m21
// M2

m2
OO

N22

l22
OO

m22
oo

and note that each of the following pairs are the coprojections of a pushout, hence each
pair is jointly epimorphic: (l1, l2), (m1,m2), (m11,m12), and (m21,m22). We are to show
that f = g; to do this, it will suffice to show that fm1 = gm1 and fm2 = gm2; we shall
prove only the former, leaving the latter to the reader. To show that fm1 = gm1 it will in
turn suffice to show that fm1m11 = gm1m11 and fm1m12 = gm1m12.
First note that a f1l11 = cu f1l11 = c f l1l11 = cgl1l11 = cgm1m11 = cug1m11 = ag1m11, so

that f1l11 = g1m11 since a is monic; thus fm1m11 = f l1l11 = u f1l11 = ug1m11 = gm1m11
as required.
On the other hand, b f2l12 = cv f2l12 = c f l2l12 = cgl2l12 = cgm1m12 = cug1m12 =

ag1m12, so by the universal property of the pullback A\B, there is a unique map h :
N12 ! A\B satisfying ph = g1m12 and qh = f2l12. Now fm1m12 = f l2l12 = v f2l12 =
vqh = uph = ug1m12 = gm1m12, and so fm1 = gm1 as claimed. As promised, we leave
the proof that fm2 = gm2 to the reader, and deduce that f = g, so that c is monic. ⇤

Since pushouts are stable it follows that intersections distribute over unions:

Corollary 5.2. The lattice Sub(Z) is distributive.

Proof. It is easy to verify that the front and back faces of the cube below are pullbacks.
Because the bottom face is a pushout, we use adhesivity in order to conclude that the top
face is a pushout, which in turn implies that A\ (B[C) = (A\B)[ (A\C).

A\B\C
rrd

d

d

d

d

d

d

d

d

d

d

d

d

d

**

U

U

U

U

✏✏

A\B

✏✏

**

U

U

U

A\C

✏✏

rrd

d

d

d

d

d

d

d

d

d

d

d

d

d

A\ (B[C)

✏✏

B\C
d

d

d

d

d

d

d

d

rrd

d

d

d

d

d

d

d

d

**

U

U

U

U

U

U

U

B
**

U

U

U

U

U

U

U C
rrd

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

d

B[C

⇤[6] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545
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DPO rewriting

Double-Pushout (DPO) rewriting in an adhesive category (cf. r7s, Def. 7.1)
A span p of morphisms

L l
ÐÝ K r

ÝÑ R

is called a production. p is said to be left linear if l is a monomorphism, and linear if both l and r are
monomorphisms. We denote the set of linear productions by LinpCq. We will also frequently make
use of the alternative notation L

p
Ýá R where p “ pL l

ÐÝ K r
ÝÑ Rq P LinpCq.

Notes:

• A homomorphism of productions p Ñ p1 consists of arrows, L Ñ L1, K Ñ K1 and R Ñ R1, such
that the obvious diagram commutes.

• A homomorphism is an isomorphism when all of its components are isomorphisms. We do not
distinguish between isomorphic productions.

[7] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545
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DPO rewriting

Admissible matches (cf. r8s, Def. 7.2)
Given a production p, a match of p in an object C P obpCq is a morphism m : L Ñ C. A match is said to
satisfy the gluing condition if there exists an object E and morphisms g : K Ñ E and v : E Ñ C such
that the square below is a pushout:

L K

C E

l

m g
y

v

More concisely, the gluing condition holds if there is a pushout complement of C m
ÐÝ L l

ÐÝ K.

[8] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545
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DPO rewriting

Set of admissible matches and linear productions (cf. r9s, Def. 7.3)
Let C be an adhesive category, and denote by LinpCq the set of linear productions on C. Given an
object C P C and a linear production p P LinpCq, we denote the set of admissible matches MppCq as
the set of monomorphisms m : L ãÑ C for which m satisfies the gluing condition. As a consequence,
there exist objects and morphisms such that in the diagram below both squares are pushouts:

L K R

C K1 D

l

m k

r

m1

l1 r1

We write pmpCq :“ D for the object “produced” by the above diagram. The process is called derivation
of C along production p and admissible match m, and denoted C ùñ

p,m
pmpCq.

[9] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545
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Concurrent compositions of (linear) rules

Convention: unless mentioned otherwise, all arrows are assumed to be monomorphisms.

Dependency relations
For rules p1, p2 P LinpCq, a dependency relation consists of an object X12 and a span of monomor-
phisms m : R1

x1
ÐÝ X12

x2
ÝÑ L2, s.t. K12, K21 and morphisms illustrated below exist, where the cospan

R1 Ñ Y12 Ð L2 is the pushout of m, and the two indicated regions are also pushouts; i.e. there exist
pushouts complements of K1

r1
ÝÑ R1 Ñ Y12 and K2

l2
ÝÑ L2 Ñ Y12.

K21 Y12 K12

K1 R1 X12 L2 K2

r11 l12

r1
x

x1 x2

x

l2

x

Intuitively, the existence of the left and right pushout diagrams amounts to the two rules agreeing on
the overlap specified by X12, and amenable to being executed concurrently. We refer to such m as an
admissible match of p2 in p1 and denote the set of these by p2 , p1.
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Concurrent compositions of (linear) rules

• Algebraically speaking, given p1, p2 and m P p2 , p1, we can consider “concurrent execution”
to be an operation that composes p1 and p2 “along” m to obtain a rule p2

m
đ p1. To obtain p2

m
đ p1,

we extend the dependency relation by taking two further pushouts (marked with dotted arrows)
and take a pullback (marked with dashed arrows):

Z12

L12 K21 Y12 K12 R12

L1 K1 R1 X12 L2 K2 R2

y1 y2

r11l11

x

l12 r12

r1l1

x

x

x1 x2

x

l2 r2

x

x

• Now we define the composite of p1 with p2 along m as

p2
m
đ p1 :“ pL12

z1
ÐÝâ Z12

z2
ãÝÑ R12q , z1 :“ l11 ˝ y1 , z2 :“ r12 ˝ y2 .

Nicolas Behr (IRIF Université Paris Diderot), September 4th 2018



Concurrent compositions of (linear) rules

The following well-known result shows that composition is compatible with application:

Concurrency Theorem (cf. r10s, Thm. 7.11)
Let p, q P LinpCq be two linear rules and C P obpCq an object.

• Given a two-step sequence of derivations

C ùñ
p,m

pmpCq ùñ
q,n

qnppmpCqq ,

there exists a composite rule r “ p2
d
đ p1 for unique d P q , p, and a unique admissible match

e PMrpCq, such that C ùñ
r,e

repCq and repCq – qnppmpCqq.

• Given a dependency relation d P q , p, r “ p2
d
đ p1 and an admissible match e P MrpCq,

there exists a unique pair of admissible matches m P MppCq and n P MqppmpCqq such that
C ùñ

p,m
pmpCq ùñ

q,n
qnppmpCqq with qnppmpCqq – repCq.

[10] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545
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Technical obstacle: proving associativity (NEW!)

We now show that concurrent composition of linear rules is, in a natural sense, associative:

Associativity Theorem (key result of our paper)

The composition operation .
.
đ . is associative in the following sense: given linear rules

p1, p2, p3 P LinpCq

there exists a bijective correspondence between pairs of admissible matches

m21 P p2 , p1 and m3p21q P p3 ,

´

p2
m12
đ p1

¯

,

and pairs of admissible matches

m32 P p3 , p2 and mp32q1 P

´

p3
m23
đ p2

¯

, p1

such that
p3

m3p21q
đ

´

p2
m21
đ p1

¯

“

´

p3
m32
đ p2

¯ mp32q1
đ p1 .

Nicolas Behr (IRIF Université Paris Diderot), September 4th 2018



On our proof of associativity

• Since DPO derivations are symmetric, it suffices to show one side of the correspondence. Our
proof is constructive, demonstrating how, given a pair of admissible matches

pm21 P p2 , p1 and m3p21q P p3 ,

´

p2
m12
đ p1

¯

q ,

one obtains m32 P p3 , p2 and mp32q1 P pp3
m32
đ p2q , p1 leading to the same two-step concurrent

composition.



On our proof of associativity

• Since DPO derivations are symmetric, it suffices to show one side of the correspondence. Our
proof is constructive, demonstrating how, given a pair of admissible matches

pm21 P p2 , p1 and m3p21q P p3 ,

´

p2
m12
đ p1

¯

q ,

one obtains m32 P p3 , p2 and mp32q1 P pp3
m32
đ p2q , p1 leading to the same two-step concurrent

composition.

• We begin with p2
m21
đ p1, p3 and the dependency relation m3p21q, illustrated below.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3



On our proof of associativity

• By Lemma 3.2, since the match m3p21q is by assumption admissible, we can find a pushout
complement and pushout to extend the above diagram as follows,

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)

and again as below.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)



On our proof of associativity

• In the next step, we compute X23 as the evident pullback. Then we further extend the diagram via
repeating the components of rule p3.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Now we push out R2 and L3 along X23, obtaining Y23 Ñ Yp12q3 from the universal property.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23



On our proof of associativity

• Next, we compute K32 by pulling back Y23 and K1p23q along Yp12q3. We obtain K3 Ñ K32 from the
universal property. To obtain the other morphisms, push out K32 and R3 along K3.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23



On our proof of associativity

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23

• We need to establish that the newly constructed front face on the left is a pushout. To do so, let
us consider the cube on the left in isolation.

Yp12q3 Kp12q3

Y23 K32

L3 K3

L3 K3

The rear face is a pushout, and therefore also a pullback. The bottom face is trivially both a
pushout and a pullback. Pasting these two pushouts together yields a pushout, and since the top
face—by construction—is a pullback, the front face is a pushout by Lemma 2.4: hence all faces of
the cube, apart from the left and the right, are both pushouts and pullbacks.



On our proof of associativity

• We take advantage of the symmetry involved, and obtain two further pushouts as front faces in
the following. Moreover, the two new upper faces are pushouts also.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23

The next step is a trivial repetition of rule p1: the new upper faces are both pushouts since they
both arise as two pushouts pasted together.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1



On our proof of associativity

• We now obtain Xp12q3 by pulling back R1 and L23 along Y1p23q, the remaining monomorphism
X12 Ñ Xp12q3 follows from the universal property.

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)



On our proof of associativity

• The final step consists in proving that the cospan R1 Ñ Y1p23q Ð L23 is the pushout of the span
R1 Ð X1p23q Ñ L23. This proof requires a somewhat lengthy diagram chase presented in the
appendix of our paper. . .

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

L2 K2 R2 X23 L3

Y12 K21 R12 X(12)3 L3

L23 K23 Y23

Y1(23) K3(12) Y(12)3

S23 = PB(K3(12) → Y(12)3 ← L3)

T23 = PB(K21 → R12 ← X(12)3)

V23 = PB(K23 → Y23 ← L3)

W23 = PB(K2 → R2 ← X23)

V23

W23

T23

S23



On our proof of associativity

• To conclude, the associativity property manifests itself in the following form, whereby the data
provided along the path highlighted in orange below permits to uniquely compute the data provided
along the path highlighted in blue (with both sets of overlaps computing the same “triple composite”
production):

L1 K1 R1 X12 L2 K2 R2

L12 K12 Y12 K21 R12 X(12)3 L3 K3 R3

Y(12)3 K(12)3 R(12)3Y1(23) K3(12)L1(23) K1(23)

X23 L3 K3 R3

Y23 K32 R23L23 K23L1 K1 R1 X1(23)

L2 K2 R2 X23 L3

Y12 K21 R12 X(12)3 L3

L23 K23 Y23

Y1(23) K3(12) Y(12)3



From associativity of concurrent derivations to rule algebras

• non-determinacy in DPO rewriting: each linear rule generically possesses more than one
admissible match into a given object

ñ need a structure to carry this non-determinism!

One interesting possibility (motivated by the physics literature)

• Each linear rule is lifted to an element of an abstract vector space.

• Concurrent composition of linear rules is lifted to a bilinear multiplication operation on this
abstract vector space, endowing it with the structure of an algebra.

• The action of rules on objects is implemented by mapping each linear rule (seen as an element
of the abstract algebra) to an endomorphism on an abstract vector space whose basis vectors
are in bijection with the objects of the adhesive category.
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The DPO rule algebra framework

Definition: rule algebra elements

Let δ : LinpCq Ñ RC be defined as a morphism which maps each linear rule p “ pI r
Ýá Oq P LinpCq

to a basis vector δppq of a free R-vector space RC ” pRC,`, ¨q. In order to distinguish between
elements of LinpCq and RC, we introduce the notation

pO
r
ð Iq :“ δ

´

I r
Ýá O

¯

.

We will later refer to RC as the R-vector space of rule algebra elements.
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The DPO rule algebra framework

Definition: rule algebra composition operation
Define the rule algebra product ˚RC as the binary operation

˚RC : RC ˆRC Ñ RC : pR1,R2q ÞÑ R1 ˚RC R2 ,

where for two basis vectors Ri “ δppiq encoding the linear rules pi P LinpCq (i “ 1, 2),

R1 ˚RC R2 :“
ÿ

m12Pp1,p2

δ
´

p1
m12
đ p2

¯

.

The definition is extended to arbitrary (finite) linear combinations of basis vectors by bilinearity,
whence for pi, pj P LinpCq and αi, βj P R,

˜

ÿ

i

αi ¨ δppiq

¸

˚RC

˜

ÿ

j

βj ¨ δppjq

¸

:“
ÿ

i,j

pαi ¨ βjq ¨ pδppiq ˚RC δppjqq .

We refer to RC ” pRC, ˚RCq as the rule algebra (of linear DPO-type rewriting rules over the adhesive
category C).
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Key theorem of the DPO rule algebra framework

Theorem
For every adhesive category C, the associated rule algebra RC ” pRC, ˚RCq is an associative
algebra. If C in addition possesses a strict initial object c∅ P obpCq, RC is in addition a unital
algebra, with unit element R∅ :“ pc∅

∅
ð c∅q.

Proof.

Associativity follows immediately from the associativity of the operation .
.
đ . proved earlier. The claim

that R∅ is the unit element of the rule algebra RC of an adhesive category C with strict initial object
follows directly from the definition of the rule algebra product for R∅ ˚RC R and R ˚RC R∅ for R P RC.
For clarity, we present below the category-theoretic composition calculation that underlies the equation
R∅ ˚RC R “ R:

K

L L L K R

∅ ∅ ∅ ∅ L K R

l x

l r
x

x x

l r

x

x



Canonical representations of DPO rule algebras

Definition
Let C be an adhesive category with a strict initial object c∅ P obpCq, and let RC be its associated
rule algebra of DPO type. Denote by Ĉ the R-vector space of objects of C, whence (with |Cy
denoting the basis vector of Ĉ associated to an element C P obpCq)

Ĉ :“ spanR pt |Cy|C P obpCquq ” pĈ,`, ¨q .

Then the canonical representation ρC of RC is defined as the algebra homomorphism ρC : RC Ñ

EndpĈq, defined to act on each rule algebra element R “ δppq (for p P LinpCq) as

ρCpδppqq |Cy :“

$

&

%

ř

mPMppCq
|pmpCqy if MppCq ‰ ∅

0Ĉ otherwise,

extended to arbitrary elements of RC and of Ĉ by linearity.

Note: The fact that ρC as given in this definition is indeed a homomorphism of unital associative
algebras is shown in Theorem 4.5 of our paper.
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Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules
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Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules

• each linear rule p ” pI r
Ýá Oq of a given adhesive category C is mapped to a (basis) element

δppq ” pO
r
ðù Iq of a free K-vector space (e.g. for K “ R or K “ C)

• an associative composition operation is defined as

˚RC : RC ˆRC Ñ RC : pR1,R2q ÞÑ R1 ˚RC R2 ,

where for two basis vectors Ri “ δppiq encoding the linear rules pi P LinpCq (i “ 1, 2),

R1 ˚RC R2 :“
ÿ

m12Pp1,p2

δ
´

p1
m12
đ p2

¯

.

The definition is extended to arbitrary (finite) linear combinations of basis vectors by bilinearity.
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Summary: the DPO rule algebra framework

Slogan: DPO rule algebras arise as the associative unital algebras of concurrent compositions of
DPO-type linear rewriting rules

• If the adhesive category C in addition possesses a strict initial object, one may define a
canonical representation ρC : RC Ñ EndKpĈq as

Ĉ :“ spanR pt |Cy|C P obpCquq , ρCpδppqq |Cy :“

$

&

%

ř

mPMppCq
|pmpCqy if MppCq ‰ ∅

0Ĉ otherwise,
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Application examples



The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

A first consistency check and interesting special (and arguably simplest) case of rule algebras:

The Heisenberg-Weyl algebra
Let R0 denote the rule algebra of DPO type rewriting for discrete graphs. Then the subalgebra H of
R0 is defined as the algebra whose elementary generators are

x: :“ p‚
∅
ð ∅q , x :“ p∅ ∅

ð ‚q ,

and whose elements are (finite) linear combinations of words in x: and x (with concatenation given
by the rule algebra multiplication ˚R0 ) and of the unit element R∅ “ p∅ ∅

ð ∅q. The canonical
representation of H is the restriction of the canonical representation of R0 to H.
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The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

• famous property of the Heisenberg-Weyl algebra: with a: :“ ρpx:q, a :“ ρpxq, 1 :“ ρpR∅q,

ra, a:s :“ aa: ´ a:a “ 1

• realization/interpretation via the DPO rule algebra R0: consider the following three DPO-type
compositions

∅

‚ ‚ ‚ ‚ ‚ ‚

∅ ∅ ‚ ∅ ‚ ∅ ∅

x

x

x x x x
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The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

• famous property of the Heisenberg-Weyl algebra: with a: :“ ρpx:q, a :“ ρpxq, 1 :“ ρpR∅q,

ra, a:s :“ aa: ´ a:a “ 1

• realization/interpretation via the DPO rule algebra R0: consider the following three DPO-type
compositions

∅

‚ ‚ ‚ ‚ ‚ ‚

∅ ∅ ‚ ∅ ‚ ∅ ∅

“ “

x

x

x x x x

p“ p∅ ∅
àÝ ‚q

∅à∅
đ p‚

∅
àÝ ∅q “ p‚ ∅

àÝ ‚q
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The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

• famous property of the Heisenberg-Weyl algebra: with a: :“ ρpx:q, a :“ ρpxq, 1 :“ ρpR∅q,

ra, a:s :“ aa: ´ a:a “ 1
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The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

• famous property of the Heisenberg-Weyl algebra: with a: :“ ρpx:q, a :“ ρpxq, 1 :“ ρpR∅q,

ra, a:s :“ aa: ´ a:a “ 1

• realization/interpretation via the DPO rule algebra R0: consider the following three DPO-type
compositions

∅

‚ ∅ ∅ ∅ ‚

‚ ∅ ∅ ∅ ∅ ∅ ‚

“ “

x

x

x x x

x

p“ p‚
∅
àÝ ∅q ∅à∅

đ p∅ ∅
àÝ ‚q “ p‚

∅
àÝ ‚q
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The Heisenberg-Weyl algebra as the DPO discrete graph rewriting rule algebra

• it is straightforward to verify that

x: ˚R0 . . . ˚R0 x:
m times

“ p‚
Z m ∅

ðù ∅q , x ˚R0 . . . ˚R0 x
n times

“ p∅ ∅
ðù ‚

Z n
q

• analogously, we find the following:
ˆ

x ˚R0 . . . ˚R0 x
m times

˙

˚R0

ˆ

x: ˚R0 . . . ˚R0 x:
n times

˙

“ p∅ ∅
ðù ‚

Z m
q ˚R0 p‚

Z n ∅
ðù ∅q

” δpAmq ˚R0 δpBnq

“
ÿ

mPAm,Bn

δ
´

p∅ ∅
àÝ ‚

Z m
q

m
đ p‚

Z n ∅
àÝ ∅q

¯

“

minpm,nq
ÿ

k“0

ˆ

1
k!

m!

pm´ kq!
n!

pn´ kq!

˙

# of ways to pick k vertices from m and from n vertices disregarding order

¨

´

‚
Z n´k ∅

ðù ‚
Z m´k

¯
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Combinatorics of graph ensembles and generators

Notational convention:
For the examples involving rule algebras over adhesive categories of graphs, we will employ a
graphical notation where a span of graph monomorphisms L Ðâ K ãÑ R is presented as a so-
called rule diagram, with the graph L drawn at the bottom, the graph R drawn at the top, and where
dotted lines indicate the structure of the injective partial morphism encoded in the span.

Example
We define the algebra A as the one generated r11s by the rule algebra elements

e` :“ 1
2 ¨

¨

˝

˛

‚ , e´ :“ 1
2 ¨

¨

˝

˛

‚ , d :“ 1
2 ¨

¨

˝

˛

‚

of the DPO rule algebra RuGraph constructed over the adhesive category uGraph of (finite) undirected
multigraphs and homomorphisms thereof, whose strict initial object is the empty graph ∅.

[11] As in the case of the Heisenberg-Weyl algebra, by “generated” we understand that a generic element of A is a finite linear
combination of (finite) words in the generators and of the identity element R∅, with concatenation given by the rule algebra
composition.
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Combinatorics of graph ensembles and generators

Example
We define the algebra A as the one generated by the rule algebra elements

e` :“ 1
2 ¨

¨

˝

˛

‚ , e´ :“ 1
2 ¨

¨

˝

˛

‚ , d :“ 1
2 ¨

¨

˝

˛

‚

of the DPO rule algebra RuGraph.

• commutation relations (with rx, ys :“ x ˚R y´ y ˚R x for R ” RuGraph)

re´, e`s “ d , re`, ds “ re´, ds “ 0 .

• Here, the only nontrivial contribution (i.e. the one that renders the first commutator non-zero) may
be computed from the DPO-type composition diagram r12s below and its variant for the admissible
match

1 2
Ð

121 211
Ñ

11 21
:

1 2 111 221 11 21

“ “

x

xx x

x

x

[12] Note that the number indices are used solely to specify the precise structure of the match, and are not to be understood as
actual vertex labels or types.



Combinatorics of graph ensembles and generators

• Let
E` :“ ρpe`q , D :“ ρpdq , E´ :“ ρpe´q .

• Since the rules underlying the operators E˘ and D do not modify the number of vertices nVpGq
when applied to a graph state |Gy, one may consider separately the action of these operators on
the spaces ĜN of N-vertex graph states

• on 2-vertex graph states, we find a representation of the Heisenberg-Weyl algebra:

En
` |

...n times y “ | ...n ` 1 times y , E´ | ...n times y “ pnq1 | ...pn ´ 1q times y

D | ...n times y “ | ...n times y .
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Combinatorics of graph ensembles and generators

• Already the action on the next more complicated case, i.e. 3-vertex graph states, has a very
interesting combinatorial structure:

E` | y “ 3 | y ” 3 |t1, 0, 0uy

E2
` | y “ 3 p| y ` 2 | yq ” 3 p|t2, 0, 0uy ` 2 |t1, 1, 0uyq

E3
` | y “ 3 p| y ` 6 | y ` 2 | yq

” 3 p|t3, 0, 0uy ` 6 |t2, 1, 0uy ` 2 |t1, 1, 1uyq

...

En
` | y ” En

` |t0, 0, 0uy “ 3
n
ÿ

k“0

Tpn, kq |Spn, kqy

• the state |tf , g, huy with f ě g ě h ě 0 and f ` g ` h “ n is the graph state on three vertices
with (in one of the possible presentations of the isomorphism class) f edges between the first two,
g edges between the second two and h edges between the third and the first vertex

• Tpn, kq and Spn, kq are given by the entry A286030 of the OEIS database r13s

[13] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A286030.
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Combinatorics of graph ensembles and generators

• Already the action on the next more complicated case, i.e. 3-vertex graph states, has a very
interesting combinatorial structure:

En
` | y ” En

` |t0, 0, 0uy “ 3
n
ÿ

k“0

Tpn, kq |Spn, kqy

• the state |tf , g, huy with f ě g ě h ě 0 and f ` g ` h “ n is the graph state on three vertices
with (in one of the possible presentations of the isomorphism class) f edges between the first two,
g edges between the second two and h edges between the third and the first vertex

• Tpn, kq and Spn, kq are given by the entry A286030 of the OEIS database r13s

• Interpretation: each triple Spn, kq encodes the outcome of a game of three players, counting
(without regarding the order of players) the number of wins per player for a total of n games.
Then Tpn, kq{3pn´1q gives the probability that a particular pattern Spn, kq occurs in a random
sample.

[13] OEIS Foundation Inc. (2018), The On-Line Encyclopedia of Integer Sequences, https://oeis.org/A286030.
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Stochastic mechanics of continuous-time Markov chains

Sketch – this would be an entire second talk. . .

Continuous-time Markov chains (CTMCs) from extensive categories
Let C be an extensive category (adhesive with strict initial object). For some (finite!) index set I, let
triuiPI be a set of base rates (with ri P Rą0), and

!

Ii
ii
ÐÝ Ki

oi
ÝÑ Oi

)

iPI

be a set of linear rules. Let Ĉ be the R-vector space of states (with basis vectors |oy for o P obpCq),
and let ProbpCq be the space of sub-probability distributions over Ĉ.
Then together with an initial state |Ψ0y P ProbpCq, this date defines a continuous-time Markov
chain (CTMC) with time-dependent state |Ψptqy P ProbpCq for all t P Rě0, evolution equation

d
dt |Ψptqy “ H |Ψptqy

and evolution operator

H “
ÿ

iPI
ri

´

ρpIi
ii
ÐÝ Ki

oi
ÝÑ Oiq ´ ρpIi

ii
ÐÝ Ki

ii
ÝÑ Iiq

¯

.
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Stochastic mechanics of continuous-time Markov chains

Two more important “ingredients” (of the so-called stochastic mechanics framework):

• “dual projection vector”:
x| : Ĉ Ñ R : |oy ÞÑ xy o :“ 1R

• observables: for all monomorphisms K m
ãÝÑ M in C, the diagonal linear operators Om

M defined
as

Om
M :“ ρpM m

ÐÝâ K m
ãÝÑ Mq

are observables, in the sense that

Om
M |oy “ Nm

Mpoq ¨ |oy , Nm
Mpoq “ # ways to apply the the linear rule M m

ÐÝâ K m
ãÝÑ M to o
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Stochastic mechanics of continuous-time Markov chains

Fact:
The evolution operator H of a CTMC satisfies

x|H ” 0 ,

whence the expectation value
xOm

Myptq :“ x|Om
M |Ψptqy

satisfies the evolution equation

d
dt xO

m
Myptq “ xrOm

M,Hsyptq , rOm
M,Hs :“ Om

MH ´ HOm
M .

ñ together with a property called jump-closure, this permits to calculate stochastic evolutions
from (combinatorial) commutation relations r14s, r15s, r16s

[14] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer
Science (LICS 2016) (2016), pp. 46–55

[15] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: arXiv preprint arXiv:1807.00785 (accepted for CSL’18) (2018)

[16] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems (in preparation)”. In: ()
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An illustrative (toy) example

Example: edge “birth-death” systems
Let H be the evolution operator of a CTMC based on the two linear rules of edge creation and edge
annihilation (with base rates κ`, κ´ P Rě0), whence

H “ κ` pE` ´ O‚ ‚q ` κ´ pE´ ´ OEq

E` :“ 1
2ρ

¨

˝

˛

‚ , O‚ ‚ :“ 1
2ρ

¨

˝

˛

‚ , E´ :“ 1
2ρ

¨

˝

˛

‚ , OE :“ 1
2ρ

¨

˝

˛

‚ .
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Time-evolution of xOEyptq (the average
number of edges at time t) for initial
state |Ψp0qy “ |G0y with NV “ 100
vertices.
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Conclusion and outlook



Conclusion and outlook

• we have successfully introduced a fully self-consistent framework of DPO rule algebras for
arbitrary adhesive categories

• amongst the main technical results is a novel proof of associativity of DPO rule compositions

• the framework appears to have a vast variety of possible applications in computer science,
combinatorics and beyond

• overview of work in progress:
• extension to restricted rewriting theories (MSCA project with J. Krivine (IRIF))
• stochastic mechanics and bisimulations for complex systems based on rewriting (with V. Danos and

I. Garnier (ENS Paris))
• analytical and enumerative combinatorics of graphical structures and their generators (with N. Zeil-

berger (U Birmingham))

Nicolas Behr (IRIF Université Paris Diderot), September 4th 2018



Thank you!
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