
Towards Executable Applied Category Theory
CAP’21, IHÉS, November 30, 2021

Nicolas Behr

CNRS, Université de Paris, IRIF (UMR 8243)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

I. A Case Study in Applied Category Theory:

from Categorical Rewriting to  
Rule-algebraic Combinatorics

II. The coreact.wiki Initiative

Plan of the talk:

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

I. A Case Study in Applied Category Theory:

from Categorical Rewriting to  
Rule-algebraic Combinatorics

II. The coreact.wiki Initiative

Plan of the talk:

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A quick tour of categorical rewriting

O I O K I

:=

rm(X) X rm(X) X X

r

m

rm

m

r

rm

T BT AT

“type cell”!

Output Keep
Input

m
atch

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A quick tour of categorical rewriting

O I O K I

:=

rm(X) X rm(X) X X

r

m

rm

m

r

rm

T BT AT

“type cell”!

Output Keep
Input

m
atch

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A quick tour of categorical rewriting

O I O K I

:=

rm(X) X rm(X) X X

r

m

rm

m

r

rm

T BT AT

“type cell”!

Output Keep
Input

m
atch

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Cloning in non-linear Double Pushout (DPO) rewriting

m

n

m1

n1 m2

n2

m1

n1 m2

n2

choice of element of
multi-

pushout
complement

pushout

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Cloning in non-linear Double Pushout (DPO) rewriting

m

n

m1

n1 m2

n2

m1

n1 m2

n2

choice of element of
multi-

pushout
complement

pushout

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Cloning in non-linear Double Pushout (DPO) rewriting

m

n

m1

n1 m2

n2

m1

n1 m2

n2

choice of element of
multi-

pushout
complement

pushout

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

rm-adhesive categories

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

rm-adhesive categories

quasi-topoi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Artin gluing based upon quasi-topos
& functor preserves all pullbacks

 quasi-topos (but not adhesive!)⇒

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Artin gluing based upon quasi-topos
& functor preserves all pullbacks

 quasi-topos (but not adhesive!)⇒

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Artin gluing based upon quasi-topos
& functor preserves all pullbacks

 quasi-topos (but not adhesive!)⇒

comma category over an adhesive category
& functor preserves only pullbacks along monos

 -adhesive category⇒ ℳ

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Artin gluing based upon quasi-topos
& functor preserves all pullbacks

 quasi-topos (but not adhesive!)⇒

comma category over an adhesive category
& functor preserves only pullbacks along monos

 -adhesive category⇒ ℳ

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

E V × V V E V × V V

E′ V′ × V′ V′ E′ V′ × V′ V′

Set /∆ Set //∆

E P(1,2)(V) V E P(1,2)(V) V

E′ P(1,2)(V′) V′ E′ P(1,2)(V′) V′

Set /P(1,2) Set //P(1,2)

ι ∆

ϕE ∆(ϕV) ϕV

ι′ ∆

ϕE

ι

ι′

∆(ϕV)

∆

ϕV

∆

ϕE P(1,2)(ϕV) ϕV

ι

ι′

P(1,2)

P(1,2)

ϕE

ι P(1,2)

P(1,2)(ϕV)

P(1,2)

ϕV

ι′

di
re

ct
ed

un
di

re
ct

ed
multigraphs simple graphs

comma category over an adhesive category
& functor preserves all pullbacks

 adhesive category⇒

Artin gluing based upon quasi-topos
& functor preserves all pullbacks

 quasi-topos (but not adhesive!)⇒

comma category over an adhesive category
& functor preserves only pullbacks along monos

 -adhesive category⇒ ℳ
?

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Quasi-topoi — a natural setting for non-linear rewriting

Concurrency Theorems for Non-linear Rewriting Theories 19

31. Heindel, T.: Hereditary Pushouts Reconsidered. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) Graph Transformations (ICGT 2010). LNCS, vol. 6372,
pp. 250–265. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

32. Johnstone, P.T.: Sketches of an Elephant – A Topos Theory Compendium, vol. 1.
Oxford University Press (2002)

33. Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, Quasiadhesive Categories
and Artin Glueing. In: Algebra and Coalgebra in Computer Science. LNCS,
vol. 4624, pp. 312–326 (2007). https://doi.org/10.1007/978-3-540-73859-6 21

34. Lack, S., Sobociński, P.: Adhesive Categories. In: FoSSaCS 2004. LNCS, vol. 2987,
pp. 273–288 (2004). https://doi.org/10.1007/978-3-540-24727-2 20

35. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO
- Theoretical Informatics and Applications 39(3), 511–545 (2005).
https://doi.org/10.1051/ita:2005028

36. Löwe, M.: Polymorphic Sesqui-Pushout Graph Rewriting. In: Graph Transforma-
tion. LNCS, vol. 9151, pp. 3–18 (2015). https://doi.org/10.1007/978-3-319-21145-
9 1

37. Monro, G.: Quasitopoi, logic and heyting-valued models. Jour-
nal of Pure and Applied Algebra 42(2), 141–164 (1986).
https://doi.org/https://doi.org/10.1016/0022-4049(86)90077-0

<latexit sha1_base64="60J9QAuxxuDmMhCKwR5ljpb5zn4=">AAAq0XiczRpdc9u40el31a9r+9gXxIrv7JRyLTm+6+XGnXOUc+7a+Jyzk7trTTUFSUhCDRI0QFpWOJzp9LWv7Z/pP+mvaXcBkiIp2XHSPlSZyAKw2F0sFvsFeLHgOtnZ+dedb3zzW9/+zne/9/3OD374ox//5J2f/uxLLVPlsxe+FFJ97VHNBI/Yi4Qngn0dK0ZDT7CvvPMhjn91yZTmMnqezGM2Cukk4mPu0wS6Xr7zb1ennmY+tu5nmWswZtO++Zs/ZmMecRzL807HjSSPAhYl5IDAfDaRak7uud54eI9wTShxqWAqyS5SqnkvkbHUOeHjccf12IRHGYvSkCmYmHdcnrCQ8IRMqSaGBiOChzwBNFFAgLppLOAAv5A+FWJOhlQlTHMaEV9IzYImMkoUm6SCqh4sTHp/hqX1fEG1hkUztd1xWRTUOHn5Tndne8d8yPKPfvGju1Z8nr386eY/3UD6MD9KDN6zD+NklAFP3Be4slSzmPrndMKyKytFsgF9ARlLBf9Beqa3AUhDHdJkCpD4R7fH9Dz0qrFOY9QLmyQ9T4qg2YXTEimFbnZTpei82TVRNJ5y/ypHIhGbAaNpGKHaZE/zs/4o+03mKjqZsEDxyTRxBUsQDHXPdV2D0ANUGsQydaca0LJsJ07yPMy6fdCgFs5hidMHWTLFo8l/i/GkyaVg4zdnstPZaHzI8MXp8+MjcnTw/NNT+B6eHJ8+rAGRoDokRI5JMmWwwWGIaow77ssIzx/TOKiYMOdOPyw4N3DA7hCg8swFLRBChxwVqbNBcN+lMGgOhkNEFYE6syBiWle4WqiGJ4BHyFcsmrD6YsiERSBjn6hUADObmrGI4HnxdKKonwC+mYJVRBMLsdXC++QEevOz3RFIyb0y+z+lKpYySuOsO8i7u/m1xHgE2MEsadhnu36yCRshZySRRmC4USSSdpBcUgWnO2lzMFE1DnQCewgiQNKZ+xTmG4SWDbIB9kKGUoE265CYY0pIExsA+EZbNjqEkLNuf/QSrV80yTvFQgxn6+ZMkIArkDzRabhe7MrDTou74BQYSWOR6lLsJEarQAVMU3+2JvaayQXgaQWXG7bcpphdPMm4Zje0atvr74VpnrfAOhV9XEBNh7AZyaiXKH6JbCHVmsqCuV5o8UyavSNUTJinKGGCocVrK26UDGHVPldg+wKqE0Oa6KlUwI8x5IuTgGRKiUgVMFUJoykLCRhBWXw/VWLOLvKbMYLWFDxTgi5HyAk4N0F8JgTxGOoz9eQlrIQYT2dWjIPmQIITqQ5AqbMoCsGuyCaoreUTtBSEo7kH3ocGNE5KylZfCyUGlYwCqgJdyhS3i8EX98F5gY8Ch5MqBh6RRAz8gce22nqQ+AfIKwggkLPIavTNyy/9cA8aUjGg1bJHlDx+dtzcy8Zex8iWVG2D5MMs1Gfw92C8EmCNXeE3j+YZDuUwiOvzxtlHef7fMxlKCC4C2Le34fboVuyWRrFp4sEy3WzAL+FEwp9yt4G0YnXiMG7siCWObqbwIxurP03WQ8XGZjq72AbEY5xL8mvmdjYOUCX0dcMurARcX2YNQqE+plNgrwDrVh+5jsihYowcWPHbeCymHN3z6hmWgoZD1+13B0CGRhPYPzDS3mV3AEbMtAtGIj82UDBawg3aELoF4d5dgsW+ctYqbrxLEC0Pyl2wXjjiGLsu1LTcUm0dNbheXkRAxIRRZuljRc/h2IKLSuAE68Lz44yekDImGHwHcNR9JWtKrasIwQ5ZEubAeI75izYK8eNvpLEgAOfqnNHEtovlgInKvEJA3ti0xkXTx5ZfNMxQOQK/n+okO3AeOUPnsRM4nziHzhPnU+cz57fO75ynzpHzuXPsPHO+cE6cU+e588L50vnK+dr5vfMHIzlipFAwhl4cmYWjGrD2ATx/ZM8Au4rRCI5hQsFcRENm+If9hNDbdhS2wzMnJUdP9zHIx+UP9wumwf5Zx0waKIEOcTl2k9yMdoyA0Qy9hr3Dm/kbr2Zw/BYMHi44BKPY0KrFFje5G1JxI3v+Su4A9ZuzB6TaElylgk3+DmHwRgZXiw9xvjmHSKzFYnEiJJhmVZ7owpOjvaXKxpktvp/yyDKNvMjY/tXjDPvzzW5/a+EIyOfHzz95aEy/8T0QXkWYcMpzotCJK+Kl4nxOZlMImjHTQOo8QuKO6fSZiaXJTKpzqiS4AsdgW3Yt1lJ4TED0i8vSBBKwcnA9YNpXPMYJEGgmc2GGbKwsKMwykXtiwnQMLlDrDVYeBKJCY+F5pBNGA+w0QUoM0YwljHEH7PvCPJkQplgWrcvUrgrF0Q4QTqEvP9sD8WLwvolJgSijcJsPFFlC0fMg7+5Zv2Tlfi11XyI5MuNwltd51Ksvfr3FhS9XsFGnavmoMbbEBhWgdhH4AQgRi0LJQxJxnymHaI4by4GrNJEmkDMFCONBGCiIwaktqyyMk3m1RybhB0nKpNwhDEi2VsjwQCQt/qegdkuixM7rxXlLaUJoqW4hz4qlu/DPlm7CuR98ZvQ9P6MhRGEafRckdQLyEEwM9t13R+DyCSTYZ8pBbp317mB95L5LursEv/fMmDBj78Hgg/X3RsRUY2rIkWSVvtRSFx4FpmQFao/MpondMH2RUrV08P1T020P/yN5VZz11eHOW38KJpdkviLpKmwVDUJusgiTGvjToiZgUmRAYItVS6WBIwTNzwajyoAd5S/RrG52B9WyCjZaBEOwPSEYfFM5wxhoLDhQsBG3Od4xmW2r7WTbaArYOWPJADCwNmvYdgVPh01OoP0SVbTS3oVKGrYAoAcbBBkn1i2uF8QynYDFJ0yYdB8X634J6eUUaO3mSC9vuQFMH8p8X4ORS2ZY3sAs1vjeNn4Ef6IW3gGXAl15XVPeEjXXbcyf6dWI666LzH4lCY1jURRmF3vQxg+zWvjRn70ePxqAWxEAdAdFRoP2wiQ0q1znkt5Z/Tdn9FaEqN9YBgYKZKPXI0VHaY3BuF07rYggSTnL86pZN/JnzsiUj5MiozT+Obod26c4L6/Yts3XyAPpPVcYU7w5PTNvQc82b0vv5G0JniwoJobiHxtZZWWjeRSniUlkZJrgT46l3DF4hcq4kYBTOCrh0kmJTh43NKDS4wYY4G3BQU8jfltUYlr2D2wIwwsLf35t5TXAuqQwRm1hZgoLU2A3YSfxUw0xgE0xrHmvcsFnqRBYUnbgF8QGhTwOeQRGtxwjQ1NVCk0GWk5v1r0eNRb57NEqYcTHTaDjVUCHz4YNKGzXDm3dOy0702VfanF58uplrbBRR7KwjsaxlNWeFTa3wVbYsrh1lCzmTbt7E2YAbiDG9jV4a2Xh13GrWsyq63DeDiFQbip7wyvU8RVxwI3YAKZ5JKDdOBI1fDeFHXBarws8bhN3vBGZVTnaSYuK9wZUTi+eHb/RivTFqjX9MdMX/wOSq1anL1aub4lip30mTcHTkigr8ZBtYP0OS6WIcilwD+PiaoS07kY8CNHPE7xRmQiGYVpO7F1NnSYurPc2hPXF8HrSOp5iRZ3a6l1B1+p7vcIK+clRz6TJeDNgts4q/wTMUnTtCf3sOF/k9pdUgReYgvMrLFSDgusfgZNQGAtDM2wL7+jzw2alwD8q9QNGqoO1hNaWipfDZhzTHO396hjx9AnemmBGmCTZ6ZOFr9kgnqK9c7a4DGtPhXHLqr3brEqt9kIWgp+k5QwAWW0CAizAq7pri4KZM2gRMY1tk+MtiJmKbAOXlZKCdDki1TU7/LrkSkbo/oo7j1pPZqAXd/JZ8WBgomQaN8vtrslbEZRnm66ZZy7zeY5OsAEJm2NGalOWHyLANjTfA5j3AYawuQTHGhe7gO+sunx7uJ8X9VU+rnWbO8hGhFTCsIva5GWwpQvnW6We5BSU5FMmLvE2hZJDfFfAI/IcdMpEH0cYp0DHU/qcfU023opG66JjTEMu5rAomgoMgPW4/I2wi2cEZ3gVwIL9ne0PR9nUsNiGsL2jTI/Ns4fWmwZ8JKFjhjVtCORCyiPsyRarfYrywwcpDHRwjij2kZ3SlV6kfDIRcwKyYJE13LZS87BBJuHnr+z7B/wlOCi+mmfAu+/4gQPBoy9t5Ky3YyBh3Xw0cfSUQqTtWJR54wbPvVKGuhmzl8vV1m+U2ofUYsiHUyxRlG939km2Se6RTT9VCmNED2uIGMpD3LWtIaacbpFfks0dp7ezvceutgB2Kx9hXTWSATvjUYT3qSzex9ER2aRbJLvn2mKirSN2+/fyj3ACLuYsUHTmoIniTPecQKaeCdTxDhNMWZnlImfEvs7Q+/3tvThxCrEwx5RmF0Laz17xySs6cSgiTdKAgQJ8ABM0m5ioF47gBDaqvz0IQweC7n1EnkiLB9rwXYA8iJN8REz/JrWLJ4zqZAvzvKpnxqDnI/uepy7SfKO8wEdleCKkB1YfAWw9VVeWu5aWmBc5giXVw6fMEym7+2DnrvGekJeSKeicQL2zz3dIvz5rUMySaAXZ3Q9vmDeoz9ttUZtNwfuumrVbn/WgmDVRsEc3MvmgPm2vmDZnQsjZ3V/fMG+vPu/9BpMDO+vu3t713L5vLSfsr31ONu7n2cmTR3m24/Q/cPq7/bw1PijGB4MPYdh58CCvMTDeLWgvODY2c0GWBaCIIqHvLWV3ECJUb9qKTXIN6OIWuMzswAyksQl8QFd6aDsUJHD8FcWTUTxJMW8HailTqUJkcyZTYW4UzRWALbeUDwIsRj+owO9iAX6DTKxu+lPJ4cyZVGIOUGUh0ZhRWNAE/QiOnGJH1m+by8KTVv4qYWGcvZtD0APxGhiHP72771Lf8IuPoaCFEAD8OZt9YueaEiyGCWej19mp1RbKHEanY0oFGGERYyQdu4b9BfejTtte7ThYOSgbI5LVqCNP3T7MeXT8+PeLkw7d+aqDv7yksmR9m4VZw+qQjdcs1Rrj/4O1Nopi+PDSxHntJ5wmzCwvMl++0+233zYu//hysN1/f3v3i0H340fFu8fvrf1ibX1tc62/9sHax2ufrj1be7Hm32F3/nbn73f+cf/0/vz+X+7/1YJ+404x5+drjc/9v/0H+Sr5lQ==</latexit>

'HÀQLWLRQ
" DBUFHPSZ & JT B TXDVL�WRSRV JGG

�� JU IBT mOJUF MJNJUT BOE DPMJNJUT

�� JU JT MPDBMMZ $BSUFTJBO DMPTFE

�� JU IBT B SFHVMBS�TVCPCKFDU�DMBTTJmFS�

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Quasi-topoi — a natural setting for non-linear rewriting
<latexit sha1_base64="gB1ppQAN7RCdu9xEl36LRAtLeu8=">AAAwxHiczTpbe+M2dt7tTrtVb0n72BeMZSfyllIkXyaN87lfbCWeTDuOvbYnydbUTkESkrDmzQBpWcOPfWx/VH9J/0V/Qs8BQIqkJI9ntg918nlM4ODccHBugBP7XCb9/n//4pd/8qtnf/pnv/7z1l/85V/99d988unf/iijVLjsjRv5kfjZoZL5PGRvEp747OdYMBo4PvvJuR3i/E/3TEgehdfJPGajgE5CPuYuTWDo7ae/+h/bYRMeZgEPeUwnLM/6vRc2optxL5nmLVumjmQugv8my2xFMpsO1L/5hYjiSHKczPNWyw4jHnosTEjrO6A6Jzb1mUiyu5RK3k0QNidbtjMebhEW/iGaS5JMGRlHvh/NeDghMeCDBZzJw5ZhjCcs4O8YMIJ/kVcJmVJJOs6ceGwMTCPtHUILUjKhIDuRc4nQ0ZgEUchdRdY9O7IFm8BAlCEP+RbpIHnXp1IiqEEBMKlPBa4EfncsMptyd0pckM3lHpNkxpMpWbWSPSSCBdRXS4NIxFMuA5lbhPdYD36PyVZwNLZdLlzCtkBuAQM2D0mTLxp6ZIupGRZzM2ohzbAY57KA7j1RNaiBrW5MQb/IIo01/2ANTIB+OteWzRK6U8XHZamUoKt3kXpTJvk9A6kKsTRdAxinchqliSTUj2BHq8qsagREkYxQwRobl4L9CBKnvu9Q9xYhURfvxy0VrsW6lUJoDZQSFDCnsA/U90lMuVDb6UYBmKrip+SZbB3bD4JPpgkVIppl4/zE7NNJbTzIwbiVhZitBZJK3IWo7AEONjBMYJNgJwqmu0jWZwGen87pxXAnb9IM89Pa9wRoaQVpgmFBsCI9CCIZ/g9wJQMx72pdjKmbRIK/U+4gPySMgqUXMq8UWa8AbKCR8VFQGLOlWVirLpbbDhXZCRg38LhVMWutRDPbUOWxgQZWSScN+V3K/DlJY5JEsK2lQWkgg38HhGehV3Ec+FX6t7eftPu9vvohy38MzB/tDfNz8fbT3/yX7UVuivuiDszNV3EyyvAYuT6iTyWLYfsA+Q3djyk4MCugAnzX0YCHlg/iSRdGR9mERQFLxBw95WJR9qB9KdmGMU85hXEEJqBGa4A0kAEFn0y28R/ZnJPzwCnn6iScIK9/O5Hv1YdwWRJFvqwPw07QeX1oIiho3X3IkQjECWA0DUKMLtnr/GYwyv4pswWdTJin9tL2WYJgGFNs21YI1RkFXU7tqQS0LOvHSZ4HWXsAYaSBc1jgdGEDmIAw8cdivKxz6bPxhzPZam3XfsjwzdX1+Rk5O77+/gp+Dy/Prw4rQBWXjB5GRY8oCND2ccfdKMQwzZT7EcxX5xGDoOJcwQG7Q4DKMxuswPdlwNH6WtsE9z3yFZrj4RBRhRCvmRfCsS9xNVANLwGPH71j4YRVhSETFoKOXSJSH5jpSAYRB446dWQi4OQDvpkAKdD7IsROA+/LSxjNb/ZGoCVzlqdUxFEUpnHW3s3be/laYnCIBYPsRcI+a/lJRzkCPO2oMNwoEkZ6ktxTwWmYNDmYiAoHEFTcW1ABks7s17BeIdRskO2aD9HBnNSxAYCrrGW7RQi5aQ9GbzEHCid5ywiiONtUZ4J4XIDmiUyDTbMrh60Gd94VMJLGfioLtZMiIstU/EEnWmsWG8CrEi5XbNl1Ndt4klFmO9Bm2x0cBGmeN8BaJX0UoGJD+BlGYTcR/B7ZQqoVky3yPTU0i9TeQfScMEdQwnT4ahpumAxBaowUPvOoTBRpArFcAD9wAqonAckUGokEJgOFMuq6iAAjGIvrpsKfs7v8cYxgNYZnSjAP9aMJ5MA+cRnEfYehPVMnugdJiMp3lcQ4qQ4kRM7yABQ2q4P1A+mA2Wo+wUox2HIHQhT1aJwUlLW9GiMGkww9KjxZ6BS3C5JGiCaS+BC0BE1SyBUgWQwZxAOH7TTtIHGPkVdQgBfNQm3Rj4sP6T6bRGLehY9IMKDV8EeUfHtxXt/L2l7HyFYkmg7JhVVoz5i0gdKANUiB4TcP5xlO5TCJ8jnj7Os8/+OZxEyPe7BvH8Pt2ZPYLZxi3cWDZ3rcgd8zTIvK3QbSglWJw7zyI5o4hhkTR7ZX/9RZDwQbq+XsrgeIx7iW5GvWtraP0STkumkbJIHQl9mLVCvXgz6OYmpdnVlH5FQwRo61+qVK4jB/hpO0eoWmAJmQ3x60d4EMDSewf+Cknfv2Ljgx9W0YCd1YQcFsAbfbhJANCPv5EiyOFatWcePcg2q5V+yCjsIhxwR8YabFlkodqCH0cpMBEZVGKdHHgt7CsYUQlcAJliby44quH0UxwRrdg6Puiqhi1LLMEPSUJqEOjGOpf9FHIX78G2ksCMC5umU00d9GHHBRmWMU5IzV19h8uvjlmg81VczA369lkh1bJ9bQ+tbyrO+sU+ul9b31yvpn61+s19aZ9YN1bl1Yv7UurSvr2npj/Wj9ZP1s/c76V6U5orRgGMMojszCUfVY8wDenugzwB5idIJjWGCYC2nAFP+wn5Cu6wHjOxx1UnKMdN+Afmx+eGSYBv+nAzOpoQQ6UB/jMMnVbEspGN3Qe9g7fZy/8WoGxx/B4OmCQ3CKNatabHGduyH1H2XPXckdoP5w9oBUU4OrTLDO3ylMPsrgavUhzg/nEIk1WDQnIsJauzjRJpKjv6VC55kNvl/zUDONvESx/leOMxzPO+3BziIQkB/Or787VK5fxR5Ir8ArwPm+JQKDuCBO6t/OyQzbNFhpIHUeInFLDbpM5dJkFolbKiIIBaozsKI20J7CYT5kvyiWJFCAFZObHpOu4DEugEQzmftqSufKPoVVKnNPVJqOyQVavcLKPc8v0Wh4HsqEUQ8HVZISQzajCWPeAfu+cE8qhTFi0apOtVSojmaCcAVj+c0BqBeT9w4WBX6Rhet6oFbxt/fz9oGOS1rva6m7EZLTTYdNHnarwm82uHCjFWxUqWo+KowtsUF9MLsQ4gCkiKafekhC7kKtTyTHjeXAVZpEKpGD0zzXEYSFUuvZdA1ZECfzco9UwQ+ajJJihzAh2Vmhw2M/afA/BbNbUiUOrlfnE7UJqaV4gj5Llp7Df6aJPHe9V8re8xsaQBYmMXZBUedDHYKFwZH92QhCPoEC+0ZYyK212d7dHNmfkfYewd8Has5Xc5/D5P7m5yOiOzgL5EiyLF8qpQsPPdXZBrNHZtNEb5i8S6lYOvjulRrWh/8kejBnfXW689E/hsklna8ouoyvol7AVRWhSgN3anoCqkQGBJGDxd9Sa+AMQfOb3VHpwM7yt+hWO+3dUizDRoMgtsawae1HqiKKwrHPgYLOuNXxjsmsJ3pJT1kKdjLR4AHQ0z5r2AwFr4d1TuD7LZpoab0Lk1RsAUAXNggqTuxbrFfEMh2PxZfMV+U+Cmv/COXlFGjt5Ugvb4SBWhManFwyw/YGVrEq9jbxI/hLsYgOKAoM5VVL+UjUXDYxv5KrEVdDF5l9EREax765v1nsQRM/rGrgx3j2fvzoAJ5EANAdm4oG/YUqaFaFziW70/avzuiTCFG3JgYmCmS72yVmoPDG4NzWLjMZJClWOU656lH+1BmZ8nFiKkoVn8OnsX2F6/KSbf35Hn0gvWuBOcWH01PrFvT051PpXX4swcsFxURR/H2tqix9NA/jNFGFTJQm+CfHVu4YokLp3IjHKRyVYOmkhJff1iygtOMaGOBtwMFILX9bdGIa/g98CMNbS3e+tvPqYV/SV05t4WaMhzHYVdpJ3FRCDqBLDO3ey1rwwlzzWPCXusZS+jhVV0DFHBkuroDK5fW+10lNyIuTVcqIz+tA56uATi+GNSj8rhzaanRaDqbLsVTjcqKHt5XGRhXJwjuqwFJ0e1b43BpbQcXjthptEXNrWoMXQX3XKxywmNfd9GOMAHANL36vUU+li/w+4URDNrEO59MQAuX62agFkSo+kzY8ig1g6icIvtfp8rEsBQ73ujzlKWnKB5FZVdJdNqg4H0Dl6u7i/IMkknerZPp9Ju/+D0iukk7erZRviWKreYRVf1STKBr3xU061fSX8vwgNjcppHGV4kBGf5vgBczEZ5jV5URf7VRpomDdjyEs74brSct4ig14qpt9hq6292pDFsqZs66qqvEiQW2dNv4JeLFw7Ql9dZ4vWgH3VEDQmEKsNA6tRsF2zyCmCEyd4TNoKu/sh9N6Y8E9K+wDZsqDtYRWd5aXs2yckxzDw+qU8uolXrJgAZkk2dXLRWjaJo6g3Vu2uDtrLoV5zaq+Ci07s/r+FnKlpBE7AFllAQIswMs2bYOCWrPbIKI+eqokXBBTDdwaLq0lAdV1SFiYBpisMPjrnosoxGhprkgqI5mCLoHzzDwomogojevdeVuVuQjKs46t1mXqK8eYWYOEzVEzlSXFQ6UFKdgGLFgXA+oJgiKs7syxJcbu4HdW3tUdHuWmHcvHlWF1ZVlLqAoYdldZvAy2dD/9pEqVXIGRfM/8e7x8oeQUnyHwkFyDTalk5QzTGhh4Ta/Zz2T7o2g07kXGNOD+HISiqY/5shwXfyNs5WkF3hww76jf+2qUTRWLSsrqwwR8NiFjhl1uSO0CykMcyRYCvUYV1V9f3Ghco0yO1dsK2Cp8uYZ/HyE3RSS9S/lk4s8JqIKF2m/rvs5hjYWE377TryXwL5+D3Yt5Bqy7lutZkGq6kc6zZS8GEjrKhxNLTink5ZZGmdfu++wHoairOX0VXe78dmF8SC2G6jnFhkbxIPCIZB2yRTpuKgRmlA52HDHxhyytJyEDne6QfyCdvtXt9w7Yww7A7uQj7MKGkcdueBji7SuLj3B2RDp0h2Rbtm496q5je7CVf40LUJgbT9CZhR6KM9m1vCh1VFqPN57gyYqaGDkj+i2HPBr0DuLEMmphlmrkLpR0lL3jk3d0YlFEmqQeg/3/EhZISPxQIjiBE9ioQW83CCxI0Y8QeRJpPPANvw3IfpzkI6LGO1QLTxiVyQ5WheXIjMHI1/rFUFWl+XZx3Y/G8NKPHHD6CKC7r7J03JUiRr3f8VlSPpbMHD9lz/f7z1XwhCqWTMEefbRJ/diHDKqrds2qCJ0ge/7VI+t2q+v2GtRmUwi+q1btVVftm1UTAXv0KJP71WUHZtmc4RPO5//4yLqD6roXNSZ39arnBwfruX2hHSfsr36COh7k2eXLkzzrW4MvrcHeIG/M75r53d2vYNra388rDIz3DO0Fx8plLsgyDwzRT+jnS7UgZAjlO1izSbYCXdwZF3UguIE0VnkP2EoXfYeAco+/U08LzQMW8+CwLLAKEyKdWZT66v5RXRjo5kzxfEBjdL0S/Dm267fJRNumO424y3QlMQeoou2ovCgINMEwgjNXOJAN8oYrNYG0DFcJC+LssxxyHkjXwDn822dHNnUVv/h0Cr4QAoB/YLPv9FrVsMUs4Wb0Pj+12kOpw2i1VGMBEyyinKSlZThacD9qNf1V38I+Q/ExIlmFOvLUHsCak/Nvf7c46TCcrzr4yyIVDe6nCKYdq0W23yOqdsb/D2StvVXiRQPLAXzo5dV9orKs7As7uAVj7r4I0i9yfUP36NjBurHcjDZr+zOZBjpfVI80IO6kAcju84AnEh9hneVbmERbpr5q5PEX56YH7V6sBTq9OK6Vbfi9AF5iCAuVl9eqKqkWetVXJGQLI2Kuu92d9t4KopdLePCG9imIGn1RfMmrkvDmo3yFpriUfvtJe9B83Lr8x4+7vcGL3t5vd9vffGMevv564+83Njc6G4ONLze+2fh+42LjzYb77Kdn+bP/ePaf/dO+35f9VIP+8hdmzd9t1H76//6/L98Vqg==</latexit>

3URSRVLWLRQ
&WFSZ TXDVL�WRSRV & FOKPZT UIF GPMMPXJOH QSPQFSUJFT�

t *U IBT 	CZ EFmOJUJPO
 B VWDEOH V\VWHP RI PRQLFV M = `K(&) 	UIF DMBTT PG UHJXODU PRQRV

XIJDI DPJODJEFT XJUI UIF DMBTT PG H[WUHPDO PRQRPRUSKLVPV
 J�F�
 JG K = 7 � 2 GPS K 2 `K(&)
BOE 2 2 2TB(&)
 UIFO 2 2 BbQ(&)�

t *U IBT 	CZ EFmOJUJPO
 B M�SDUWLDO PDS FODVVLÀHU (h, ⌘)�

t *U JT UP�TXDVL�DGKHVLYH
 J�F�
 JU IBT SXVKRXWV DORQJ UHJXODU PRQRPRUSKLVPV
 UIFTF BSF VWD�
EOH XQGHU SXOOEDFNV
 BOE SXVKRXWV DORQJ UHJXODU PRQRV DUH SXOOEDFNV�

t *U JT M�DGKHVLYH�

t 'PS BMM QBJST PG DPNQPTBCMF NPSQIJTNT � 7�! " BOE " K�! * XJUI K 2 M
 UIFSF H[LVWV D ÀQDO
SXOOEDFN�FRPSOHPHQW �)3&� � M�! 6 ;�! *
 BOE XJUI M 2 M�

t *U QPTTFTTFT BO HSL�M�IDFWRUL]DWLRQ� FBDI NPSQIJTN � 7�! " GBDUPST BT 7 = K � 2
 XJUI
NPSQIJTNT � 2�! �" JO 2TB(&) BOE �" K�! � JO M 	VOJRVFMZ VQ UP JTPNPSQIJTN JO �"
�

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Case of directed simple graphs (a quasi-topos!)
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

rm-adhesive categories

quasi-topoi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Case of directed simple graphs (a quasi-topos!)
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

rm-adhesive categories

quasi-topoi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Case of directed simple graphs (a quasi-topos!)
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

rm-adhesive categories

quasi-topoi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Case of directed simple graphs (a quasi-topos!)
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)mPOCPO

O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

(-) linear Double-Pushout (DPO)ℳ

(-) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)

-a
dh

es
iv

e
ca

te
go

rie
s

(+

 s
om

e
ex

tra
 a

ss
un

pt
io

ns
…

)
ℳ

rm-adhesive categories

quasi-topoi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Rule algebras for categorical rewriting systems

O2 I2 O1 I1

X2 X1 X0

O2 I2 µ O1 I1

O21 P21 I21

X2 X0

r2 r1

TT

1:1

r2 r1

r2
µ!Tr1

T

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Rule algebras for categorical rewriting systems

O2 I2 O1 I1

X2 X1 X0

O2 I2 µ O1 I1

O21 P21 I21

X2 X0

r2 r1

TT

1:1

r2 r1

r2
µ!Tr1

T

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Rule algebras for categorical rewriting systems

O2 I2 O1 I1

X2 X1 X0

O2 I2 µ O1 I1

O21 P21 I21

X2 X0

r2 r1

TT

1:1

r2 r1

r2
µ!Tr1

T

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Rule algebras for categorical rewriting systems
O2 I2 O1 I1

X2 X1 X0

O2 I2 µ O1 I1

O21 P21 I21

X2 X0

r2 r1

TT

1:1

r2 r1

r2
µ!Tr1

T

⇣
O

r
(�� I

⌘
�
⇣

O
r

(�� I

⌘

(iso-class of a) rule basis vector
of a vector space (R, ⇤R)

�(r2) ⇤R �(r1) :=

X

µ

�
⇣

r2

µCT r1

⌘
Definition: the rule algebra product is defined via

“sum over ways to compose the rules”

⇤R : R⇥R ! R

The rule algebra is an associative unital algebra,

 with unit element .
(R, ⇤R)

�(? (?)

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Rule algebras for categorical rewriting systems

|Xi⇣
O

r
(�� I

⌘
�
⇣

O
r

(�� I

⌘

(iso-class of an) object basis vector
of a vector space Ĉ

|Xi

⇢T
�
�(r)

�
|Xi :=

X

m

|rm(X)i “sum over all ways to apply r to X”

⇢T : R ! End
�
Ĉ
�

O I O K I

:=

rm(X) X rm(X) X X

r

m

rm

m

r

rm

T BT AT

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Rule algebras for categorical rewriting systems

⇢T
�
�(r)

�
|Xi :=

X

m

|rm(X)i
⇢T : R ! End

�
Ĉ
�

O2 I2 O1 I1

X2 X1 X0

O2 I2 µ O1 I1

O21 P21 I21

X2 X0

r2 r1

TT

1:1

r2 r1

r2
µ!Tr1

T

�(r2) ⇤R �(r1) :=

X

µ

�
⇣

r2

µCT r1

⌘

Theorem

 is a representation of the rule algebra , i.e.⇢T : R ! End
�
Ĉ
�

(R, ⇤R)

⇢T
�
�(r2)

�
⇢T

�
�(r1)

�
|Xi = ⇢T

�
�(r2) ⇤R �(r1)

�
|Xi

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Submitted to:
TERMGRAPH 2020

© N. Behr
This work is licensed under the
Creative Commons Attribution License.

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

TERM
G

RAPH
 2020

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

The enumerative combinatorics "workflow" (à la Flajolet):

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

The enumerative combinatorics "workflow" (à la Flajolet):

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Example: planar rooted binary trees (PRBTs)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Example: planar rooted binary trees (PRBTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Example: planar rooted binary trees (PRBTs)

G(�) :=

X

n�0

�n

n!
(# of structures of size n)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Example: planar rooted binary trees (PRBTs)

G(�) :=

X

n�0

�n

n!
(# of structures of size n)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

⇤

⇤
⇤

⇤
P1 := P2 := P3 := P4 :=

Choose some patterns:

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Motivation

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

Example: planar rooted binary trees (PRBTs)

G(�) :=

X

n�0

�n

n!
(# of structures of size n)

G(�;!1, ... ,!k) :=

X

n�0

�n

n!

X

p1,...,pk�0

!p1

1
· · ·!pk

k

p1! · · · pk!

✓
of structures of size n

and with pi occurrences of pattern Pi (for 1  i  k)

◆

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

⇤

⇤
⇤

⇤
P1 := P2 := P3 := P4 :=

Choose some patterns:

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

This talk

An alternative approach to enumerative combinatorics based upon rewriting theory:

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

• generate structure S via applying
rewriting rules to some initial
configuration “in all possible ways”

• count patterns via applying special
types of rewriting rules

• formulate generating functions via
linear operators associated to
rewriting rules

Key tool: the rule-algebra formalism!

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

The Rémy uniform generator (heuristics)

or

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

 combinatorics of partial observations: rather than trying to reason about the
full structure of the combinatorial species, we instead pick a (finite) set of patterns

 and try to reason about their combinatorics within the species via EGFs

⇒

P1, …, Pk

G(�;!1, ... ,!k) :=

X

n�0

�n

n!

X

p1,...,pk�0

!p1

1
· · ·!pk

k

p1! · · · pk!

✓
of structures of size n

and with pi occurrences of pattern Pi (for 1  i  k)

◆

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Insight from stochastic mechanics: introduce so-called observables ÔP

ÔP | t⟩ := (#P(t)) ⋅ | t⟩ — a PBRT patternP
of occurrences

of in the PBRT P t

 combinatorics of partial observations: rather than trying to reason about the
full structure of the combinatorial species, we instead pick a (finite) set of patterns

 and try to reason about their combinatorics within the species via EGFs

⇒

P1, …, Pk

G(�;!1, ... ,!k) :=

X

n�0

�n

n!

X

p1,...,pk�0

!p1

1
· · ·!pk

k

p1! · · · pk!

✓
of structures of size n

and with pi occurrences of pattern Pi (for 1  i  k)

◆

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A rule-algebraic generating-functionology

Definition Let be defined via for arbitrary PRBT iso-class . (Note: this permits to
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A rule-algebraic generating-functionology

+LMPUP[PVU �� /HW �: EH D OLQHDU RSHUDWRU �WKH NLULYH[VY�� OHW �PR, ... , �PK EH D FKRLFH RI �ILQLWHO\
PDQ\� WH[[LYU VIZLY]HISLZ� DQG OHW |syi 2 �* GHQRWH WKH PUP[PHS Z[H[L� 7KHQ WKH L_WVULU[PHS
TVTLU[�NLULYH[PUN M\UJ[PVU �,4.-� G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i ����

+HUH� ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD� DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTHS]HYPHISLZ�

š 6LQFH ZH DVVXPH sy WR EH D MPUP[L VIQLJ[� FOHDUO\ HDFK RI WKH VHWV a(M)
�: LV RI ILQLWH FDUGLQDOLW\�

š 7KH FRHIILFLHQWV ;M = h| �:M |syi DUH HYLGHQWO\ RI ILQLWH YDOXH DV ZHOO� ZKLFK LQ VXPPDU\
SHUPLWV WKH IROORZLQJ YLWHY[P[PVU RI WKH IRUPDO SRZHU VHULHV G(�; y)�

G(�; 0) =
X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X) , gn(X) := hX | Ĝn |X0i ����

&RQVHTXHQWO\� WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH JVTIPUH[VYPHS Z[Y\J[\YLZ

JVU[HPULK PU [OL M�[O NLULYH[PVU� ZLWK ;M(s) WKH^LPNO[RI D FRQILJXUDWLRQ s LQ WKH M�WK
JHQHUDWLRQ�

š)RU JHQHULF YDOXHV RI !� G(�;!) HYDOXDWHV DV IROORZV�

G(�;!) =
X

n�0

�n

n! h| e
!·Ô

Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X)e!·N(X) , Ni(X) := h| Ôi |X i .

����

Definition Let be defined via for arbitrary PRBT iso-class . (Note: this permits to
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A rule-algebraic generating-functionology

+LMPUP[PVU �� /HW �: EH D OLQHDU RSHUDWRU �WKH NLULYH[VY�� OHW �PR, ... , �PK EH D FKRLFH RI �ILQLWHO\
PDQ\� WH[[LYU VIZLY]HISLZ� DQG OHW |syi 2 �* GHQRWH WKH PUP[PHS Z[H[L� 7KHQ WKH L_WVULU[PHS
TVTLU[�NLULYH[PUN M\UJ[PVU �,4.-� G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i ����

+HUH� ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD� DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTHS]HYPHISLZ�

š 6LQFH ZH DVVXPH sy WR EH D MPUP[L VIQLJ[� FOHDUO\ HDFK RI WKH VHWV a(M)
�: LV RI ILQLWH FDUGLQDOLW\�

š 7KH FRHIILFLHQWV ;M = h| �:M |syi DUH HYLGHQWO\ RI ILQLWH YDOXH DV ZHOO� ZKLFK LQ VXPPDU\
SHUPLWV WKH IROORZLQJ YLWHY[P[PVU RI WKH IRUPDO SRZHU VHULHV G(�; y)�

G(�; 0) =
X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X) , gn(X) := hX | Ĝn |X0i ����

&RQVHTXHQWO\� WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH JVTIPUH[VYPHS Z[Y\J[\YLZ

JVU[HPULK PU [OL M�[O NLULYH[PVU� ZLWK ;M(s) WKH^LPNO[RI D FRQILJXUDWLRQ s LQ WKH M�WK
JHQHUDWLRQ�

š)RU JHQHULF YDOXHV RI !� G(�;!) HYDOXDWHV DV IROORZV�

G(�;!) =
X

n�0

�n

n! h| e
!·Ô

Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X)e!·N(X) , Ni(X) := h| Ôi |X i .

����

Definition Let be defined via for arbitrary PRBT iso-class . (Note: this permits to
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A rule-algebraic generating-functionology

+LMPUP[PVU �� /HW �: EH D OLQHDU RSHUDWRU �WKH NLULYH[VY�� OHW �PR, ... , �PK EH D FKRLFH RI �ILQLWHO\
PDQ\� WH[[LYU VIZLY]HISLZ� DQG OHW |syi 2 �* GHQRWH WKH PUP[PHS Z[H[L� 7KHQ WKH L_WVULU[PHS
TVTLU[�NLULYH[PUN M\UJ[PVU �,4.-� G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i ����

+HUH� ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD� DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTHS]HYPHISLZ�

š 6LQFH ZH DVVXPH sy WR EH D MPUP[L VIQLJ[� FOHDUO\ HDFK RI WKH VHWV a(M)
�: LV RI ILQLWH FDUGLQDOLW\�

š 7KH FRHIILFLHQWV ;M = h| �:M |syi DUH HYLGHQWO\ RI ILQLWH YDOXH DV ZHOO� ZKLFK LQ VXPPDU\
SHUPLWV WKH IROORZLQJ YLWHY[P[PVU RI WKH IRUPDO SRZHU VHULHV G(�; y)�

G(�; 0) =
X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X) , gn(X) := hX | Ĝn |X0i ����

&RQVHTXHQWO\� WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH JVTIPUH[VYPHS Z[Y\J[\YLZ

JVU[HPULK PU [OL M�[O NLULYH[PVU� ZLWK ;M(s) WKH^LPNO[RI D FRQILJXUDWLRQ s LQ WKH M�WK
JHQHUDWLRQ�

š)RU JHQHULF YDOXHV RI !� G(�;!) HYDOXDWHV DV IROORZV�

G(�;!) =
X

n�0

�n

n! h| e
!·Ô

Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X)e!·N(X) , Ni(X) := h| Ôi |X i .

����

Definition Let be defined via for arbitrary PRBT iso-class . (Note: this permits to
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A rule-algebraic generating-functionology

+LMPUP[PVU �� /HW �: EH D OLQHDU RSHUDWRU �WKH NLULYH[VY�� OHW �PR, ... , �PK EH D FKRLFH RI �ILQLWHO\
PDQ\� WH[[LYU VIZLY]HISLZ� DQG OHW |syi 2 �* GHQRWH WKH PUP[PHS Z[H[L� 7KHQ WKH L_WVULU[PHS
TVTLU[�NLULYH[PUN M\UJ[PVU �,4.-� G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i ����

+HUH� ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD� DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTHS]HYPHISLZ�

š 6LQFH ZH DVVXPH sy WR EH D MPUP[L VIQLJ[� FOHDUO\ HDFK RI WKH VHWV a(M)
�: LV RI ILQLWH FDUGLQDOLW\�

š 7KH FRHIILFLHQWV ;M = h| �:M |syi DUH HYLGHQWO\ RI ILQLWH YDOXH DV ZHOO� ZKLFK LQ VXPPDU\
SHUPLWV WKH IROORZLQJ YLWHY[P[PVU RI WKH IRUPDO SRZHU VHULHV G(�; y)�

G(�; 0) =
X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X) , gn(X) := hX | Ĝn |X0i ����

&RQVHTXHQWO\� WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH JVTIPUH[VYPHS Z[Y\J[\YLZ

JVU[HPULK PU [OL M�[O NLULYH[PVU� ZLWK ;M(s) WKH^LPNO[RI D FRQILJXUDWLRQ s LQ WKH M�WK
JHQHUDWLRQ�

š)RU JHQHULF YDOXHV RI !� G(�;!) HYDOXDWHV DV IROORZV�

G(�;!) =
X

n�0

�n

n! h| e
!·Ô

Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X)e!·N(X) , Ni(X) := h| Ôi |X i .

����

Definition Let be defined via for arbitrary PRBT iso-class . (Note: this permits to
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A rule-algebraic generating-functionology

+LMPUP[PVU �� /HW �: EH D OLQHDU RSHUDWRU �WKH NLULYH[VY�� OHW �PR, ... , �PK EH D FKRLFH RI �ILQLWHO\
PDQ\� WH[[LYU VIZLY]HISLZ� DQG OHW |syi 2 �* GHQRWH WKH PUP[PHS Z[H[L� 7KHQ WKH L_WVULU[PHS
TVTLU[�NLULYH[PUN M\UJ[PVU �,4.-� G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i ����

+HUH� ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD� DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTHS]HYPHISLZ�

š 6LQFH ZH DVVXPH sy WR EH D MPUP[L VIQLJ[� FOHDUO\ HDFK RI WKH VHWV a(M)
�: LV RI ILQLWH FDUGLQDOLW\�

š 7KH FRHIILFLHQWV ;M = h| �:M |syi DUH HYLGHQWO\ RI ILQLWH YDOXH DV ZHOO� ZKLFK LQ VXPPDU\
SHUPLWV WKH IROORZLQJ YLWHY[P[PVU RI WKH IRUPDO SRZHU VHULHV G(�; y)�

G(�; 0) =
X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X) , gn(X) := hX | Ĝn |X0i ����

&RQVHTXHQWO\� WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH JVTIPUH[VYPHS Z[Y\J[\YLZ

JVU[HPULK PU [OL M�[O NLULYH[PVU� ZLWK ;M(s) WKH^LPNO[RI D FRQILJXUDWLRQ s LQ WKH M�WK
JHQHUDWLRQ�

š)RU JHQHULF YDOXHV RI !� G(�;!) HYDOXDWHV DV IROORZV�

G(�;!) =
X

n�0

�n

n! h| e
!·Ô

Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X)e!·N(X) , Ni(X) := h| Ôi |X i .

����

Definition Let be defined via for arbitrary PRBT iso-class . (Note: this permits to
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

?

Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

?

Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

Submitted to:
TERMGRAPH 2020

© N. Behr
This work is licensed under the
Creative Commons Attribution License.

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

Submitted to:
TERMGRAPH 2020

© N. Behr
This work is licensed under the
Creative Commons Attribution License.

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

Submitted to:
TERMGRAPH 2020

© N. Behr
This work is licensed under the
Creative Commons Attribution License.

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

(∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

Submitted to:
TERMGRAPH 2020

© N. Behr
This work is licensed under the
Creative Commons Attribution License.

On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

?

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

N. Behr 15

closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30] = 0 , [ÔP3, R̂P30] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

Example: generating planar rooted binary trees (PRBTs) uniformly

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

?

Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

I. A Case Study in Applied Category Theory:

from Categorical Rewriting to  
Rule-algebraic Combinatorics

II. The coreact.wiki Initiative

Plan of the talk:

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

$$3*���� &R5($&7 35&
$PPSEJOBUFE CZ� /JDPMBT #FIS �� NPOUIT ������ e
&�� � 'PVOEBUJPOT PG EJHJUBM UFDIOPMPHZ� DPNQVUFS TDJFODF
 BVUPNBUJD
 TJHOBM QSPDFTTJOH

&R5($&7
&RT�EDVHG 5HZULWLQJ� WRZDUGV ([HFXWDEOH $SSOLHG &DWHJRU\ 7KHRU\
&RQVRUWLXP� *3*' 	61

 -*1 	&/4�-ZPO

 -*9 	²DPMF 1PMZUFDIOJRVF

 4PQIJB�"OUJQPMJT 	*OSJB

, 3UH�SURSRVDO·V FRQWH[W� SRVLWLRQLQJ DQG REMHFWLYH�V�

5IF BEWFOU PG UIF BQQMJFE DBUFHPSZ UIFPSZ 	"$5
 QBSBEJHN BT XFMM BT MBSHF�TDBMF QSPKFDUT GPS GPSNBM�
J[JOH NBUIFNBUJDT WJB UIFPSFN QSPWFST 	NBUI�DPNQ
 NBUI�DMBTTFT
 ����
 PGGFST BO JOUSJHVJOH QPTTJCJMJUZ
GPS JOUFSEJTDJQMJOBSZ SFTFBSDI JO UIF UIFPSFUJDBM TDJFODFT� 8F QSPQPTF UP BQQMZ UIFTF QBSBEJHNT UP B
SFTFBSDI BSFB JO UIFPSFUJDBM DPNQVUFS TDJFODF UIBU JT JEFBMMZ TVJUFE� UIF UIFPSZ PG DPNQPTJUJPOBM DBU�
FHPSJDBM SFXSJUJOH
 UIF NPEFSO HFOFSBMJ[BUJPO PG UIF BMHFCSBJD BQQSPBDI UP HSBQI SFXSJUJOH�4UBSUJOH
GSPN UIF QJPOFFSJOH XPSL PG &ISJH FU BM� JO UIF FBSMZ ����T <�>
 XJUI B LFZ NJMFTUPOF UIF UIFPSZ PG
BEIFTJWF DBUFHPSJFT BT JOUSPEVDFE CZ -BDL BOE 4PCPDJOTLJ JO UIF FBSMZ ����T <��>
 UIF DBUFHPSJDBM
BQQSPBDI UP SFXSJUJOH QFSNJUT UP USFBU B WBTU WBSJFUZ PG TZTUFNT PG QSBDUJDBM BOE UIFPSFUJDBM JOUFSFTU

BOE JT UIF EF GBDUP TUBOEBSE BQQSPBDI JO UIJT mFME�

$POUSBSZ UP FYJTUJOH QSPKFDUT BJNFE BU GPSNBMJ[JOHNBUIFNBUJDBM DPODFQUT TVDI BT DBUFHPSZ UIFPSZ
JUTFMG WJB UIFPSFN QSPWFST TVDI BT *Q[<�>
 Ab�#2HH2f>PG <��> PS G2�M <��>
 B QFDVMJBSJUZ PG DBUFHPS�
JDBM SFXSJUJOH SFTJEFT JO UIF OBUVSF PG MFNNBUB BOE QSPPGT JO UIJT GPSNBMJTN
 XIJDI JT DIBSBDUFSJ[FE
BT CFJOH IFBWJMZ CBTFE VQPO B EJBHSBNNBUJD DBMDVMVT PO DPNNVUBUJWF EJBHSBNT� 5IJT QPTFT UIF
JOUSJHVJOH DIBMMFOHF PG EFWFMPQJOH B TVJUBCMF BQQSPBDI UP QSPmU GSPN UIJT IJHIMZ NPEVMBSJ[FE UZQF PG
NBUIFNBUJDBM SFBTPOJOH BMTP XJUIJO UIF TUSBUFHZ UP GPSNBMJ[BUJPO XJUIJO $PR
 BT XFMM BT UIF EFTJHO
QSJODJQMF GPS JOUFSBDUJOH XJUI $PR JO B EJBHSBN�CBTFE GPSN�

5IF LFZ WJTJPO PG UIJT QSPKFDU JT UP BTTFNCMF B UFBN PG EPNBJO FYQFSUT BT XFMM BT BO JOUFSOBUJPOBM
POMJOF JOUFSFTU HSPVQ UBSHFUFE BU EFWFMPQJOH BOE DVSBUJOH BO JOUFSBDUJWF
 $PR�FOBCMFE 8JLJ TZTUFN
GPS DBUFHPSJDBM SFXSJUJOH UIFPSZ
 BJNFE BU CPUI DFSUJGZJOH BOE DVSBUJOH UIF LOPXMFEHF JO UIJT SFTFBSDI
mFME JO B NPEFSO
 PQFOMZ BDDFTTJCMF GPSNBU�

D 2EMHFWLYHV DQG VFLHQWLÀF K\SRWKHVHV

:RUN 3DFNDJH ��)RXQGDWLRQV DQG FRUH HQJLQH

7DVN ���� 'HYHORSPHQW RI D PHWKRGRORJ\ IRU GLDJUDPPDWLF UHDVRQLQJ LQ &RT� 0OF PG UIF LFZ UFDI�
OJRVFT JO GPSNVMBUJOH BOE QSPWJOH TUBUFNFOUT JO DBUFHPSJDBM SFXSJUJOH UIFPSJFT JT B DFSUBJO UZQF PG
DBMDVMVT PO DPNNVUBUJWF EJBHSBNT� 'JYJOH B TVJUBCMF BNCJFOU DBUFHPSZ XJUIJO XIJDI UIF HJWFO DMBTT
PG SFXSJUJOH TZTUFNT JT GPSNVMBUFE
 B OVNCFS PG DSVDJBM UFDIOJDBM QSPQFSUJFT BSF NBEF BWBJMBCMF
 TVDI
BT DFSUBJO TUBUFNFOUT PO FYJTUFODF BOE OBUVSF PG QVTIPVU TRVBSFT 	F�H� TUBCJMJUZ PG NPOPNPSQIJTNT

DFSUBJO TVCEJWJTJCJMJUZ QSPQFSUJFT PG DPNNVUBUJWF TRVBSFT PS FWFO UISFF�EJNFOTJPOBM TUBUFNFOUT TVDI
BT UIF WBO ,BNQFO QSPQFSUZ 	XIJDI FOUBJMT DFSUBJO TUBUFNFOUT BCPVU DPNNVUBUJWF DVCFT
� *OTQFDU�
JOH UIF TUBUFNFOU PG QSPPGT TVDI BT PG UIF DPODVSSFODZ UIFPSFNT
 JU JT FWJEFOU UIBU B XFMM�BEBQUFE
GPSNBMJ[BUJPO PG DBUFHPSJDBM SFXSJUJOH UIFPSZ XJUIJO $PR TIPVME JEFBMMZ CF CBTFE VQPO B GPSN PG EJ�
BHSBNNBUJD SFBTPOJOH BQQSPBDI UIBU DMPTFMZ GPMMPXT UIF QSBDUJDF JO UIF mFME� $POUSBSZ UP FYJTUJOH
DBUFHPSZ UIFPSZ MJCSBSJFT
 XF QPTJU UIBU BO BQQSPBDI CBTFE VQPO UIF OPUJPO PG TLFUDIFT <�> �3$0"�
BOE PO B DBSFGVMMZ BEBQUFE VTBHF PG TJHNB�UZQFT JO UIF TQJSJU PG <��> XJMM QFSNJU B NPEVMBSJ[FE BQ�
QSPBDI UP WFSJGZJOH DPNNVUBUJWF EJBHSBN CBTFE SFBTPOJOH JO $PR�

7DVN ����)RUPDOL]DWLRQ �LQ &RT� DQG FHUWLÀFDWLRQ RI D UHSUHVHQWDWLYH FROOHFWLRQ RI D[LRPV DQG WKHR�
UHPV IRU FDWHJRULFDO UHZULWLQJ WKHRU\� 5BLJOH UIF SFQSFTFOUBUJWF DPMMFDUJPO PG BYJPNT
 MFNNBUB BOE
UIFPSFNT GPS DPNQPTJUJPOBM DBUFHPSJDBM SFXSJUJOH UIFPSZ BT QSFTFOUFE JO <�
 �> BT B TUBSUJOH QPJOU
 XF
BJN UP GPSNBMJ[F B DPOTJTUFOU DPSQVT PG GPSNBM LOPXMFEHF JO UIJT mFME WJB PVS OPWFM EJBHSBNNBUJD SFB�
TPOJOH BQQSPBDI� 5IJT DPSQVT TIPVME DPOUBJO BO FODPEJOH PG TVJUBCMF UZQFT PG CBTF DBUFHPSJFT 	J�F�

� � �

$$3*���� &R5($&7 35&
$PPSEJOBUFE CZ� /JDPMBT #FIS �� NPOUIT ��� ��� e
&�� � 'POEFNFOUT EV OVNÏSJRVF � JOGPSNBUJRVF
 BVUPNBUJRVF
 USBJUFNFOU EV TJHOBM

GPSN PG DPOGFSFODF QSPDFFEJOHT BOE FYUFOEFE WFSTJPOT UIFSFPG
 OPUBCMZ JO UIF DPOUFYU PG UIF *OUFSOB�
UJPOBM $POGFSFODF PO (SBQI 5SBOTGPSNBUJPO 	*$(5
� 6OUJM SFDFOUMZ
 UIF TUBOEBSE SFGFSFODF CPPL <��>
IBT CFFO POF PG UIF NBJO FOUSZ QPJOUT GPS OFX NFNCFST PG UIF mFME� :FU
 JU JT XFMM�LOPXO UP FYQFSUT
UIBU UIJT CPPL DPOUBJOT WBSJPVT UFDIOJDBM FSSPST
 TPNF PG XIJDI BSF EFFQMZ IJEEFO XJUIJO UIF NBUIF�
NBUJDBM UIFPSZ 	OPUF
 IPXFWFS
 UIF NPEFSO SFGFSFODF CPPL <��>
� "T B WFSZ NBUVSF SFTFBSDI mFME

NBOZ PG UIF NPSF SFDFOU EFWFMPQNFOUT QSFTFOUFE BU *$(5 IBWF CFFO SFBDIJOH B MFWFM PG UFDIOJDBM
EJGmDVMUZ UIBU SFOEFST JU JODSFBTJOHMZ IBSE GPS SFWJFXFST UP TVTUBJO UIF SFRVJSFE IJHI MFWFM PG RVBMJUZ
DPOUSPM
 IJOUJOH BU UIF OFFE GPS UFDIOJDBM NFBOT TVDI BT QSPPG BTTJTUBOUT� "U *$(5 ����
 B QPEJVN
EJTDVTTJPO BNPOHTU FYQFSUT 	JODMVEJOH /� #FIS
 DPODMVEFE UIBU JU XPVME CF IJHIMZ EFTJSBCMF UP EF�
WFMPQ TVDI NFDIBOJ[FE GPSNBMJ[BUJPOT BOE TJNVMUBOFPVTMZ BEESFTT UIF MBDL PG B NPEFSO GPSN PG
PQFOMZ BDDFTTJCMF LOPXMFEHF CBTF BLJO UP UIF nLab JO DBUFHPSZ UIFPSZ�

&RT�EDVHG IRUPDOL]DWLRQ RI PDWKHPDWLFV� 5IF .BUIFNBUJDBM $PNQPOFOUT MJCSBSZ <�> DPOUBJOT UIF
MBSHFTU DPSQVT PG GPSNBMJ[FE BMHFCSB GPS Coq BOE JT BMTP POF PG UIF NPTU XJEFMZ VTFE MJCSBSJFT JO Coq
FDPTZTUFN� 5IF MJCSBSZ PSHBOJ[FT JUT DPOUFOUT BSPVOE B DVSBUFE IJFSBSDIZ PG BMHFCSBJD TUSVDUVSFT UIBU
EP OPU GFBUVSF DBUFHPSJFT BOE SFMBUFE DPODFQUT BU UIF UJNF PG XSJUJOH� 5IBU IJFSBSDIZ JT JO UIF QSPDFTT
PG CFJOH QPSUFE UP UIF UPPM Hierarchy Builder (HB) <��> UP JNQSPWF JUT NBJOUBJOBCJMJUZ BOE FBTF
GVUVSF FYUFOTJPOT� *O 5BTL ���
 XF DPNNJU UP FOIBODJOH HB BOE BEEJOH TQFDJmD TVQQPSU GPS DBUFHPSZ
UIFPSZ
 QBWJOH UIF XBZ UP JOUFHSBUJOH DBUFHPSJDBM TUSVDUVSFT JO UIF .BUIFNBUJDBM $PNQPOFOUT MJCSBSZ�
"OPUIFS OPUBCMF Coq MJCSBSZ DPOUBJOJOH NBOZ OPUJPOT PG DBUFHPSZ UIFPSZ JT UniMath <��>
 XIJDI CVJMET
BSPVOE UIF VOJWBMFODF BYJPN� 8F TFF UIJT MJCSBSZ CPUI BT B TPVSDF PG JOTQJSBUJPO BOE BT B CFODINBSL
UP BTTFTT UIF SFTVMUT JO 5BTLT ��� BOE ����

,QWHUIDFH� SURRI WDFWLFV DQG GDWDEDVH GHVLJQ IRU Coq� " SFDPHOJ[FE EJGmDVMUZ JO SFOEFSJOH $PR�CBTFE
GPSNBMJ[BUJPOT PG NBUIFNBUJDBM LOPXMFEHF XJEFMZ BDDFTTJCMF UP QSBDUJUJPOFST JO UIF UIFPSFUJDBM TDJ�
FODFT JT UIF OBUVSF PG UIF JOUFSBDUJPO XJUI UIF TZTUFN� 5P EBUF
 OP QMBUGPSN UIBU JOUFHSBUFT IVNBO�
SFBEBCMF XJLJ�UZQF UFYU
 Coq QSPPG TDSJQUT BT XFMM BT BO JOUFSBDUJWF DPNQPOFOU UP FYUSBDU TOJQQFUT GSPN
UIF EBUBCBTF PG BYJPNT BOE MFNNBUB JT JO FYJTUFODF
 EFTQJUF JNQMFNFOUBUJPOT GPS TVC�BTQFDUT PG UIJT
QSPCMFN� UIF jsCoq QSPKFDU 	DP�EFWFMPQFE CZ &� (BMMFHP

 Coq�QMVHJOT GPS Sphinx
 UIF q.uiver.app
DPNNVUBUJWF EJBHSBN FEJUPS BOE UIF wQSPPG�CZ�QPJOUJOHw QSPUPUZQFT <��o��> �

,, 3DUWQHUVKLS

D &RQVRUWLXP
3DUWQHU /DVW QDPH)LUVW QDPH 3RVLWLRQ 7DVNV ,QYROYHPHQW
6OJWFSTJUÏ EF 1BSJT #&)3 /JDPMBT $/34 $3 ���
 ���
 ���
 ��� �� Q�N

("--&(0 &NJMJP *OSJB 431 ���
 ���
 ��� �� Q�N
()&&3#3"/5 "NÏMJF .E$ ��� � Q�N
)&3#&-*/)VHP *OSJB %3 ���
 ��� � Q�N
.&--*µ4 1BVM�"OESÏ $/34 %3 ���
 ���
 ��� �� Q�N
30(07" "MFYBOESB 1I% TU� ��� � Q�N

&/4�-ZPO)"3.&3 3VTTFMM $/34 $3 ���
 ���
 ���
 ��� �� Q�N
)*34$)08*5; 5PN $/34 %3 ���
 ��� � Q�N
1064 %BNJFO $/34 %3 ���
 ��� � Q�N

²DPMF 1PMZUFDIOJRVF .*.3". 4BNVFM 13 ���
 ���
 ��� � Q�N
8&3/&3 #FOKBNJO *OSJB %3 ���
 ��� � Q�N
;&*-#&3(&3 /PBN .E$ ���
 ���
 ��� � Q�N

*OSJB 4PQIJB�"OUJQPMJT #&3505 :WFT *OSJB %3 ���
 ��� � Q�N
$0)&/ $ZSJM *OSJB $3 ���
 ��� � Q�N
5"44* &OSJDP *OSJB $3 ��� � Q�N

� � �

coreact.wiki

http://coreact.wiki

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Main objectives of the CoREACT/GReTA ExACT initiative

• Development of a methodology for diagrammatic reasoning in Coq
• Formalization (in Coq) and certification of a representative collection of

axioms and theorems for compositional categorical rewriting theory
• Development of a Coq-enabled interactive database and wiki system

• Development of a CoREACT wiki-based “proof-by-pointing” engine

• Executable reference prototype algorithms from categorical structures in
Coq (via the use of SMT solvers/theorem provers such as Z3)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Main objectives of the CoREACT/GReTA ExACT initiative

• Development of a methodology for diagrammatic reasoning in Coq
• Formalization (in Coq) and certification of a representative collection of

axioms and theorems for compositional categorical rewriting theory
• Development of a Coq-enabled interactive database and wiki system

• Development of a CoREACT wiki-based “proof-by-pointing” engine

• Executable reference prototype algorithms from categorical structures in
Coq (via the use of SMT solvers/theorem provers such as Z3)

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

PDF LaTeXML

HTML

(semi-) automatic cross-linking
provided via NNexus system

LaTeX sources
(hosted on GitHub)

• J. Lurie’s online textbook on
categorical homotopy theory

• technology based upon online
tags view via the Gerby system

https://kerodon.net

https://planetmath.org

https://ncatlab.org https://gerby-project.github.io

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

https://kerodon.net
https://planetmath.org
https://ncatlab.org
https://gerby-project.github.io

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

PDF LaTeXML

HTML

(semi-) automatic cross-linking
provided via NNexus system

LaTeX sources
(hosted on GitHub)

• J. Lurie’s online textbook on
categorical homotopy theory

• technology based upon online
tags view via the Gerby system

https://kerodon.net

https://planetmath.org

https://ncatlab.org https://gerby-project.github.io

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

https://kerodon.net
https://planetmath.org
https://ncatlab.org
https://gerby-project.github.io

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

PDF LaTeXML

HTML

(semi-) automatic cross-linking
provided via NNexus system

LaTeX sources
(hosted on GitHub)

• J. Lurie’s online textbook on
categorical homotopy theory

• technology based upon online
tags view via the Gerby system

https://kerodon.net

https://planetmath.org

https://ncatlab.org https://gerby-project.github.io

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

https://kerodon.net
https://planetmath.org
https://ncatlab.org
https://gerby-project.github.io

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

https://leanprover.github.io

Jeremy Avigad: "Formal mathematics,
dependent type theory, and the Topos Institute"

https://youtu.be/Kpa8cCUZLms

Kevin Buzzard: "What is the point of Lean's
maths library?"

https://youtu.be/alByz_LoANE

https://github.com/agda

Hu Jason, CPP21: “Formalizing Category Theory in Agda”

https://youtu.be/a2txkoybw2M

https://coq.inria.fr

EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT)

https://youtu.be/k8T9L0qR38o

A (very non-exhaustive!) view on proof assistants in mathematics

https://youtu.be/Kpa8cCUZLms
https://youtu.be/alByz_LoANE
https://leanprover.github.io
https://youtu.be/a2txkoybw2M
https://github.com/agda
https://youtu.be/k8T9L0qR38o
https://coq.inria.fr

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

https://leanprover.github.io

Jeremy Avigad: "Formal mathematics,
dependent type theory, and the Topos Institute"

https://youtu.be/Kpa8cCUZLms

Kevin Buzzard: "What is the point of Lean's
maths library?"

https://youtu.be/alByz_LoANE

https://github.com/agda

Hu Jason, CPP21: “Formalizing Category Theory in Agda”

https://youtu.be/a2txkoybw2M

https://coq.inria.fr

EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT)

https://youtu.be/k8T9L0qR38o

A (very non-exhaustive!) view on proof assistants in mathematics

https://youtu.be/Kpa8cCUZLms
https://youtu.be/alByz_LoANE
https://leanprover.github.io
https://youtu.be/a2txkoybw2M
https://github.com/agda
https://youtu.be/k8T9L0qR38o
https://coq.inria.fr

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq — overview

https://coq.inria.fr

• 1984 implementation of the Calculus of Constructions at INRIA-Rocquencourt by
Thierry Coquand and Gérard Huet

• 1991 Calculus of Inductive Constructions (CIC) by Christine Paulin-Mohring
• 2002 completion of the four color theorem proof in Coq by Georges Gonthier

and Benjamin Werner (start of the SSReflect development)
• (…)
• 2012 completion of the Feit–Thompson theorem by Georges Gonthier et al.
• (…)
• more than 200 people contributed over the past >30 years (most recent stable

version: 8.14)

https://coq.inria.fr

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq — famous milestones

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq-combi

Author: Florent Hivert
https://github.com/math-comp/Coq-Combi

https://www.lri.fr/~hivert/Coq-Combi/

https://github.com/math-comp/Coq-Combi
https://www.lri.fr/~hivert/Coq-Combi/

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq-combi

Author: Florent Hivert
https://github.com/math-comp/Coq-Combi

https://github.com/math-comp/Coq-Combi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq-combi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq-combi

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Major usability concerns (?)
• Difficult and work-intensive to install/compile from source on some systems

• As both a proof assistant and a programming language, understanding the theory behind Coq and
acquiring a working knowledge of the semantics/technical peculiarities of the Coq system is quite work-intensive

• Finding and analyzing proofs is mostly a manual (if assisted) process — standardization and searchability?

• Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging

• “Burden of interdisciplinarity” — documenting a given piece of mathematical knowledge in a wiki system
requires substantial amounts of human-readable and potentially highly technical text, potentially with very
involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form
of programming which has to be aided by some form of Coq API documentation and ideally a library of code
examples

• …

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

https://youtu.be/4O84o1hk1Qs

Major usability concerns (?)
• Difficult and work-intensive to install/compile from source on some systems

• As both a proof assistant and a programming language, understanding the theory behind Coq and
acquiring a working knowledge of the semantics/technical peculiarities of the Coq system is quite work-intensive

• Finding and analyzing proofs is mostly a manual (if assisted) process — standardization and searchability?

• Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging

• “Burden of interdisciplinarity” — documenting a given piece of mathematical knowledge in a wiki system
requires substantial amounts of human-readable and potentially highly technical text, potentially with very
involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form
of programming which has to be aided by some form of Coq API documentation and ideally a library of code
examples

• …

https://youtu.be/4O84o1hk1Qs

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

jsCoq

https://github.com/jscoq

https://github.com/jscoq

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

https://github.com/jscoq

jsCoq

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

https://github.com/jscoq

jsCoq

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Towards automated theorem-proving and tactics-learning

https://coqhammer.github.io https://coq-tactician.github.io

https://smtcoq.github.io https://github.com/math-comp/hierarchy-builder

https://coqhammer.github.io
https://coq-tactician.github.io
https://smtcoq.github.io
https://github.com/math-comp/hierarchy-builder

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Coq-community

“A project for a collaborative, community-driven
effort for the long-term maintenance and
advertisement of Coq packages.”

• 58 repositories

https://github.com/coq-community

http://www.apple.com/uk

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

The coreact.wiki proposal

(graph-) databaseknowledge graphs

wiki entry (e.g., a Lemma)
#hash (auto-generated)
tags
list of cross-references
bibliographic references
code origin references

LaTeX-based, with annotations permitting generation of
cross-references via NNexus

Human-readable text

Machine-readable Coq-formalization

Examples (both maths & Coq)

Proof tactics and performance data

Including compatible Coq version and possibly different
variants for (1) different Coq versions and/or (2) different
implementation strategies/frameworks/theories.

PDF & HTML textbook

Maintenance: collaborate with/
adopt standards of Coq-community

Curated in jsCoq, directly executable from within the
wiki entry in the form of a literate web document and/or
as a bundle of a Coq file with instructions for a
particular Docker image for Coq.

Machine-learned tactics data, cross-evaluation of
performance of different variants of implementations, user
annotations on different Coq versions/libraries used

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A proposal for a wiki-topic case study: HoTT Species

https://repository.upenn.edu/edissertations/1512/

https://github.com/jdoughertyii/hott-species

https://repository.upenn.edu/edissertations/1512/
https://github.com/jdoughertyii/hott-species

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A proposal for a wiki-topic case study: HoTT Species

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A proposal for a wiki-topic case study: HoTT Species

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

A proposal for a wiki-topic case study: HoTT Species

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

Nicolas Behr, CAP’21, IHÉS, November 30, 2021

coreact.wiki

http://coreact.wiki

Merci beaucoup !

