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A quick tour of categorical rewriting
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Four flavours of categorical rewriting semantics
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Cloning in non-linear Double Pushout (DPO) rewriting
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Cloning in non-linear Double Pushout (DPO) rewriting
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choice of element of
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Four flavours of categorical rewriting semantics

A -adhesive categories
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Four flavours of categorical rewriting semantics |, _aghesive categories
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Four flavours of categorical rewriting semantics |, _aghesive categories

A -adhesive categories
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directed

undirected

simple graphs
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multigraphs
E c
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& functor preserves all pullbacks PE
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comma category over an adhesive category Artin gluing based upon quasi-topos
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= adhesive category = quasi-topos (but not adhesive!)
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directed

undirected

multigraphs simple graphs

comma category over an adhesive category Artin gluing based upon quasi-topos
& functor preserves all pullbacks & functor preserves all pullbacks
= adhesive category = quasi-topos (but not adhesive!)
Set /A Set /A
comma category over an adhesive category ?

& functor preserves only pullbacks along‘monos
= .//-adhesive category

Set /P2 Set /P12
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Quasi-topoi — a natural setting for non-linear rewriting

Definition

A category C Is a quasi-topos Ift
1. 1t has finite limits and colimits
2. 1t is locally Cartesian closed

3. It has a regular-subobject-classifier.

Johnstone, P.T., Lack, S., Sobocinski, P.: Quasitoposes, Quasiadhesive Categories
and Artin Glueing. In: Algebra and Coalgebra in Computer Science. LNCS,
vol. 4624, pp. 312-326 (2007). https://doi.org/10.1007 /978-3-540-73859-6_21
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Quasi-topoi — a natural setting for non-linear rewriting

Proposition

—very quasi-topos C enjoys the following properties:

e |t has (by definition) a stable system of monics M = rm(C) (the class of regular monos),
which coincides with the class of extremal monomorphisms, i.e., if m =foeform € rm(C)

and e € epi(C), then e € iso(C).

* |t has (by definition) a M-partial map classifier (T, n).

e |t is rm-quasi-adhesive, I.e., it has pushouts along regular monomorphisms, these are sta-

ble under pullbacks, and pushouts along regular
e |tis M-adhesive.

e [or all pairs of composable morphisms A L Bar

monos are pullbacks.

d B — Cwith m € M, there exists a final

pullback-complement (FPC) A = F = C, and wit

nn & M.

® |t possesses an epi-M-factorization: each morphism A ! Bfactors as f = m o e, wWith
morphisms A = B in epi(C) and B = A in M (uniquely up to isomorphism in B).

Nicolas Behr, CAP’21, IHES, Novem

ber 30, 2021



Case of directed simple graphs (a quasi-topos!) rm-adhesive categories
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Case of directed simple graphs (a quasi-topos!) rm-adhesive categories
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Rule algebras for categorical rewriting systems
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Rule algebras for categorical rewriting systems

) ra

Oz ‘ > O; - 1
T \ / T

X2 ‘ X1 ‘ XO
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Rule algebras for categorical rewriting systems

Op +——— Iy O +—
T \ / T
X2 ‘ X1 ‘
gl:l
0y —— I, 0; ~—
X
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Rule algebras for categorical rewriting systems

O%lz

1

\/ ] 0t1) == (ot

X X <O-
0 (iso-class of a) rule of a vector space R
1o Definition: the rule algebra product x1 : R X R — R is defined via
. : Z 2 “ »
O, —2>— |, 0, -~ | (r2) *R (r_l) " — (r2 <|Tr1) sum over ways to compose the rules
L

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

The rule algebra (R, *r) is an associative unital algebra,

with unit element (o — ).
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Rule algebras for categorical rewriting systems

O - r I
X o= |X)
T m
(iso-class of an) object basis vector ~
of a vector space C v
rm (X) X

ot i R — End(C) B N
IOT (5(r)> X> — Z rm (X)> “sum over all ways to apply r to X”
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Rule algebras for categorical rewriting systems

O%lz

|1

\ / N 0(r2) *r 0(rq) = Zé (rg %Tn)

X XO M

b ot i R — End(C)

Theorem LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020

ot 1 R — End(C) is a representation of the rule algebra (R, *r), i.e.
(1

p1(0(r2)) pr(0(r1)) |X) = pr(d(r2) *= o(r1)) |X)
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On Stochastic Rewriting and Combinatorics
via Rule-Algebraic Methods™

Nicolas Behr

Université de Paris, CNRS, IRIF
F-750006, Paris, France

nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described 1n terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

0¢0¢ HdVHOINHA 1L
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Motivation

The enumerative combinatorics "workflow" (a la Flajolet):

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function
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Motivation

The enumerative combinatorics "workflow" (a la Flajolet):

combinatorial structure S

Analytic
Combinatorics

generating function of S

Philippe Flajolet and
Robert Sedgewick

choice of patterns P

multi-variate generating function
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Viotivation
Example: planar rooted binary trees (PRBTS)

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function
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Viotivation
Example: planar rooted binary trees (PRBTS)

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

. . ! wﬁ” - °wEk of structures of size n
G W, s i) 15 ; n! ; §;>O p1!- - pk! ( and with p; occurrences of pattern P; (for 1 < i < k) )
1 yanny k
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This talk

An alternative approach to enumerative combinatorics based upon rewriting theory:

generate structure S via applying
combinatorial structure S rewriting rules to some initial
configuration “in all possible ways”

count patterns via applying special
types of rewriting rules

formulate generating functions via
linear operators associated to
rewriting rules

generating function of S

choice of patterns P

multi-variate generating function

Key tool: the rule-algebra formalism!

Nicolas Behr, CAP’21, IHES, November 30, 2021



Example: generating planar rooted binary trees (PRBTSs) uniformly

The Remy uniform generator (heuristics)
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Example: generating planar rooted binary trees (PRBTSs) uniformly

— combinatorics of partial observations: rather than trying to reason about the
full structure of the combinatorial species, we instead pick a (finite) set of patterns

Py, ..., Pk and try to reason about their combinatorics within the species via EGFs

. . ! wﬁ” - -wEk of structures of size n
G W s i) 15 Z n! Z .. ! < and with p; occurrences of pattern P; (for 1 < i < k) )
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Example: generating planar rooted binary trees (PRBTSs) uniformly

— combinatorics of partial observations: rather than trying to reason about the
full structure of the combinatorial species, we instead pick a (finite) set of patterns

Py, ..., Pk and try to reason about their combinatorics within the species via EGFs

IOk :
of structures of size n
Gl Z Z < and with p; occurrences of pattern F; (for 1 </ < k) )

n>0 ' D1 yeees pk>0

Insight from stochastic mechanics: introduce so-called observables ép

ép |7) = (#p(0)) - | 1) P — a PBRT pattern

# of occurrences
of P in the PBRT ¢

Nicolas Behr, CAP’21, IHES, November 30, 2021




A rule-algebraic generating-functionology

Definition

_et (| be defined via { | ) := 1 for arbitrary

implement tr

D

e operation of summation over coefficients)
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A rule-algebraic generating-functionology
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A rule-algebraic generating-functionology

Definition

_et (| be defined via { | ) := 1 for arbitrary

implement tr

Definition

D

e operation of summation over coefficients)

L et G be a linear operator (the generator),

ST iso-class 1 . (Note: this permits to

et | Xo) € C denote the initial state

eAG ‘XO>
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A rule-algebraic generating-functionology

Definition

_et (| be defined via { | ) := 1 for arbitrary

implement tr

Definition

D

e operation of summation over coefficients)

ST iso-class 1 . (Note: this permits to

AN

Lot G be a linear operator (the generator), let 61, ..., O e a choice of (finitely
many) pattern observables, and let | Xy) € C denote the initial state

e@QeAG ‘X()>
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A rule-algebraic generating-functionology

Definition Let (| be defined via ( | ) := 1 for arbitrary PRBT iso-class ¢ . (Note: this permits to
implement the operation of summation over coefficients)

AN

Definition Let G be a linear operator (the generator), let 61, ..., Oy De a choice of (finitely

many) pattern observables, and let | Xg) € C denote the initial state. Then the exponential
moment-generating function (EMGF) G()\; w) is defined as

G\ w) := (| e2CerC |X,) (12)

AN

Here, we employed the shorthand notation w - O 1= S:fll wJ-CA)J-, and A as well as wq, ..., wm are
formal variables.

Nicolas Behr, CAP’21, IHES, November 30, 2021



Combinatorial evolution equations

The formal EMGF evolution equation for G(\; w) reads as follows:

ZONw) = (| (e706) 29X |X,)  (ada(B) = AB — BA) (15)

Nicolas Behr, CAP’21, IHES, November 30, 2021



Combinatorial evolution equations

The formal EMGF evolution equation for G(\; w) reads as follows:

2 G(\w) = (| ( Mé‘) e 0AC X\ (ada(B) := AB — BA) (15)
Applying the version of the jump-closure theorem appropriate for the chosen rewriting seman-
tics (DPO or SgPQ), the above formal evolution equation may be converted into a proper evolu-
tion equation on formal power series if the following polynomial jump-closure nolds:

(PIC') Vg€ Zso:3N(n) € 220, vq(w. k) €R: (|ad°8(6) =3 mulw k) (|0 (16)
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Combinatorial evolution equations

The formal EMGF evolution equation for G(\; w) reads as follows:

0

oA

G)

(PJC") Vg€ Zso:3N(n) e ZZ0, Yq(

tics (DPO or SgP

G\ w) = (| ( wé‘) e 0AC X\ (ada(B) := AB — BA) (15)

Applying the version of the jJump-closure theorem appropriate for the chosen rewriting seman-
0), the above formal evolut
tion equation on formal power series i

loNn eguation may be converted into a proper evolu-
the following polynomial jump-closure holds:

N(q)
w k) €ER: (Jad ] Z Ylw. k) (O (19
=0
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Combinatorial evolution equations

The formal EMGF evolution equation for G(\; w) reads as follows:
2 G(\w) = (| ( wé‘) e CAC XV (ada(B) := AB — BA) (15)
Applying the version of the jJump-closure theorem appropriate for the chosen rewriting seman-

tics (DPO or SgPQ), the above formal evolution eguation may be converted into a proper evolu-
tion equation on formal power series if the following polynomial jump-closure nolds:

G)

N(q)
/ = m O . 28
(PIC') Vg€ Zs0:IN(n) € 22y, 7q(w k) €R: (|ad°2(G) = > qulw, k) (|1 O°  (16)
w-O —

1O

f a given set of observables satisfies (PJC"), the formal evolution equation (12) for the EMGF
G(A;w) may be refined into

9 G(\w) = 6w, dw)G(\w), Glw,dw) = (<|e%-é(€;)) o (17)
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Example: generating planar rooted binary trees (PRBTSs) uniformly

On Stochastic Rewriting and Combinatorics
via Rule-Algebraic Methods*

Nicolas Behr
| Université de Paris, CNRS, IRIF
F-75006, Paris, France
| | nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.
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Example: generating planar rooted binary trees (PRBTSs) uniformly

0})13:\/5 Z \/a 0P23\</ Z \</a Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |
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Example: generating planar rooted binary trees (PRBTSs) uniformly
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Example: generating planar rooted binary trees (PRBTSs) uniformly
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Combinatorial evolution equations

The formal EMGF evolution equation for G(\; w) reads as follows:
ZONw) = (| (e706) 29X |X,)  (ada(B) = AB — BA) (15)

Applying the version of the jump-closure theorem appropriate for the chosen rewriting seman-
tics (DPO or SgPO), the above formal evolution equation may be converted into a proper evolu-
tion equation on formal power series if the following polynomial jump-closure nolds:

(PIC') Vg € Zo0:3N(n) € 220, 79(w k) €R: {|ad?(G) = > mlw k) (|O° (16

f a given set of observables satisfies (PJC"), the formal evolution equation (12) for the EMGF
G(A;w) may be refined into

HINw) = 6w dw)G(Xw), Glw dw) = ((|e2())| 17)

O— 0w
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Plan of the talk:

. A Case Study in Applied Category Theory:

from Categorical Rewriting to

Rule-algebraic Combinatorics

Il. The coreact.wik1i Initiative
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CoREACT

Cog-based Rewriting: towards Executable Applied Category Theory

Consortium: IRIF (UP), LIP (ENS-Lyon), LIX (Ecole Polytechnique), Sophia-Antipolis (Inria)

Partner Last name First name
Université de Paris BEHR Nicolas
GALLEGO Emilio
GHEERBRANT  Amélie
HERBELIN Hugo
VIELLIES Paul-André =
ROGOVA Alexandra
ENS-Lyon HARMER Russell D is ;
HIRSCHOWITZ ~ Tom : s |
S OUS Darrien =3 Intemat&onal Onhne Workgroup on. :
Ecole Polytechnique VIMRAM Samuel = CUtab'e/lPP“ed Gatego'”y \7190'3'
WERNER Benjamin % |
ZEILBERGER Noam ;
Inria Sophia-Antipolis  BERTOT Yves |
COHEN Cyri
TASSI Enrico

coreact.wiki
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http://coreact.wiki

Main objectives of the COREACT/GReTA EXACT initiative

- Development of a methodology for diagrammatic reasoning in Coq

+ Formalization (in Coqg) and certification of a representative collection of
axioms and theorems for compositional categorical rewriting theory

+ Development of a Coq-enabled interactive database and wiki system
+ Development of a COREACT wiki-based “proof-by-pointing” engine

- Executable reference prototype algorithms from categorical structures in
Coqg (via the use of SMT solvers/theorem provers such as Z3)
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A (very non-exhaustive!) view on wiki svstems in mathematics/ (AICT

gz\% nLab Home Page All Pages
species

Contents

1. Idea

2. Definition

1-categorical

2-categorical

(o0, 1)-categorical

Operations on species

Sum

Cauchy product

Hadamard product

Dirichlet product

Composition product

3. In Homotopy Type Theory

Operations on species

Coproduct

Hadamard product

https://ncatlab.org
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https://planetmath.org
https://ncatlab.org
https://gerby-project.github.io

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT
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A (very non-exhaustive!l) view on proof assistants in mathematics

7 /Y
9 Q Hu Jason, CPP21: “Formalizing Category Theory in Agda”

https://github.com/agda

https://youtu.be/a2txkoybw2M

A

t Th e C O q P rO Of AS S I S ta nt EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT)

. . https://youtu.be/k8T9L8gR380
https://coq.1nria.fr

\
V

THEOREM PROVER

Microsoft Research

https://leanprover.github. 10

Jeremy Avigad: "Formal mathematics,
dependent type theory, and the Topos Institute”

https://youtu.be/Kpa8cCUZLms

Kevin Buzzard: "WWhat is the point of Lean's
maths library”?”

https://youtu.be/alByz | oANE

Nicolas Behr, CAP’21, IHES, November 30, 2021


https://youtu.be/Kpa8cCUZLms
https://youtu.be/alByz_LoANE
https://leanprover.github.io
https://youtu.be/a2txkoybw2M
https://github.com/agda
https://youtu.be/k8T9L0qR38o
https://coq.inria.fr

A (very non-exhaustive!l) view on proof assistants in mathematics

7 /Y
9 Q Hu Jason, CPP21: “Formalizing Category Theory in Agda”

https://github.com/agda

https://youtu.be/a2txkoybw2M

A

! Th e C O q P rO Of AS S I S ta nt EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT)

. . https://youtu.be/k8T9L8gR380
https://coq.1nria.fr

\
V

THEOREM PROVER

Microsoft Research

https://leanprover.github. 10

Jeremy Avigad: "Formal mathematics,
dependent type theory, and the Topos Institute”

https://youtu.be/Kpa8cCUZLms

Kevin Buzzard: "WWhat is the point of Lean's
maths library”?”

https://youtu.be/alByz | oANE

Nicolas Behr, CAP’21, IHES, November 30, 2021


https://youtu.be/Kpa8cCUZLms
https://youtu.be/alByz_LoANE
https://leanprover.github.io
https://youtu.be/a2txkoybw2M
https://github.com/agda
https://youtu.be/k8T9L0qR38o
https://coq.inria.fr

Coq — overview

t The Coqg Proof Assistant

https://coq.1nria.fr

- 1984 implementation of the Calculus of Constructions at INRIA-Rocguencourt by
Thierry Coquand and Gérard Huet

- 1991 Calculus of Inductive Constructions (CIC) by Christine Paulin-Mohring
- 2002 completion of the four color theorem proof in Coq by Georges Gonthier
and Benjamin Werner (start of the SSRef lect development)

- (...)

- 2012 completion of the Feit-Thompson theorem by Georges Gonthier et al.

© (...)

+ more than 200 people contributed over the past >30 years (most recent stable
version: 8.14)
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Coq — famous miles
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SOFTWARE FOUNDATIONS

The Software Foundations series is a broad introduction to the mathematical underpinnings of reliable software.

The principal novelty of the series is that every detail is one hundred percent formalized and machine-checked: the entire text
of each volume, including the exercises, is literally a "proof script" for the Coq proof assistant.

The exposition is intended for a broad range of readers, from advanced undergraduates to PhD students and researchers. No
specific background in logic or programming languages is assumed, though a degree of mathematical maturity is helpful. A
one-semester course can expect to cover Logical Foundations plus most of Programming Language Foundations or Verified
Functional Algorithms, or selections from both.

ons is the entry-point to the
series. It covers functional programming,
basic concepts of logic, computer-assisted
theorem proving, and Coq.

Programming
Language
Foundations

Logical
Foundations
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Coq-combi

Algebraic Combinatorics in Cog/SSReflect Documentation

cxtract
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Coq-combi
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Coq-combi

e Shapes and Integer Partitions

e Shapes
o Afinite type finType for coordinate of boxes inside a shape

o Rewriting_bigops running_along_the boxes of a shape
o Adding_a box to a shape

e Integer Partitions
o Definitions and basic properties

o (Corners, adding_and removing_corners
o Conjugate of a partition
o Partial sum of partitions

¢ Inclusion of Partitions and Skew Partitions
e Sigma Types for Partitions

e Counting_functions

e TODO: Generalize and move in finOrdType
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Coq-combi

Section PartCombClass.

Structure intpart : Type := IntPart {pval :> seq nat; _ : is part pval}.
Canonical intpart subType := Eval hnf in [subType for pval].

Definition intpart egMixin := Eval hnf in [egMixin of intpart by <:].
Canonical intpart eqType := Eval hnf in EqType intpart intpart eqMixin.

Definition intpart choiceMixin := Eval hnf in [choiceMixin of intpart by <:].
Canonical intpart choiceType := Eval hnf in ChoiceType intpart intpart choiceMixin.
Definition intpart countMixin := Eval hnf in [countMixin of intpart by <:].
Canonical intpart countType := Eval hnf in CountType intpart intpart countMixin.

Lemma intpartP (p : intpart) : is part p.

Hint Resolve intpartP.

Canonical conj intpart p := IntPart (is part conj (intpartP p)).
Lemma conj intpartK : involutive conj intpart.

Lemma intpart sum inj (s t : intpart)
(V k, part sum s k = part sum t k) - s = t.

Fixpoint enum partnsk sm sz mx : (seq (seq nat)) :=
if sz is sz.+1 then

flatten [seq [seqg 1 :: p p <- enum partnsk (sm - i) sz i] | i <- iota 1 (minn sm mx)]
else if sm is sm.+1 then [::] else [:: [::]].
Definition enum partns sm sz := enum partnsk sm sz sm.
Definition enum partn sm := flatten [seq enum partns sm sz | sz <- iota 0 sm.+1 ].
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Major usability concerns (?)

- Difficult and work-intensive to install/compile from source on some systems

- As both a proof assistant and a programming language, understanding the theory behind Cog and
acquiring a working knowledge of the semantics/technical peculiarities of the Coqg system is quite work-intensive

+ Finding and analyzing proofs is mostly a manual (if assisted) process — standardization and searchability”
- Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging

- “Burden of interdisciplinarity” — documenting a given piece of mathematical knowledge in a wiki system
requires substantial amounts of human-readable and potentially highly technical text, potentially with very
involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form
of programming which has to be aided by some form of Coq APl documentation and ideally a liorary of code
examples
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Finding and analyzing proofs is mostly a manual (if assisted) process — standardization and searchability”
Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging

“Burden of interdisciplinarity” — documenting a given piece of mathematical knowledge in a wiki system
requires substantial amounts of human-readable and potentially highly technical text, potentially with very
involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form

of programming which has to be aided by some form of Coq APl documentation and ideally a liorary of code
examples

Neil Strickland, Proof assistants
as a routine tool?

795 views * 7 years ago

... OxfordQuantumVideo

On 10 Nov 2014, at Homotopy Type Theory Workshop (7-10
Nov 2014, Mathematical Institute, University of Oxford)

https://youtu.be/408401hk1Qs
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jsCoq

@5y AdNex D

Welcome to the jsCoq Interactive Online System!

Welcome to the jsCoq technology demo! jsCoq is an interactive, web-based environment for the Coq
Theorem prover, and is a collaborative development effort. See the list of contributors below.

jsCoq is open source. If you find any problem or want to make any contribution, you are extremely welcome!
We await your feedback at GitHub and Zulip.
Instructions:

The following document contains embedded Coq code. All the code is editable and can be run directly on
the page. Once jsCoq finishes loading, you are free to experiment by stepping through the proof and
viewing intermediate proof states on the right panel.

Actions:

Button | Key binding Action

L Z Alt + ¢/t or | Move through the proof.
Alt +N/P

de Alt + Enter or | Run (or go back) to the current point.
Alt + -

() F8 Toggles the goal panel.

Creating your own proof scripts:

The scratchpad offers simple, local storage functionality. It also allows you to share your development with
other users in a manner that is similar to Pastebin.

A First Example: The Infinitude of Primes

If you are new to Coq, check out this introductory tutorial by Mike Nahas. As a more advanced showcase,
we display a proof of the infinitude of primes in Coq. The proof relies on the Mathematical Components
library from the MSR/Inria team led by Georges Gonthier, so our first step will be to load it:

From Coqg Require Import ssreflect ssrfun ssrbool.
From mathcomp Require Import eqtype ssrnat div prime.

Ready to do Proofs!
Once the basic environment has been set up, we can proceed to the proof:
(* A nice proof of the infinitude of primes, by Georges Gonthier *)

Lemma prime above m : {p | m < p & prime p}.
Proof.

Goals

jsCoq (0.13.3), Cog 8.13.2/81300 (September 2021),

compiled on Sep 21 2021 15:32:50
OCaml 4.12.0, Js_of_ocaml 3.9.0

Cogq worker is ready.

===> Loaded packages [init]

Messages Info ¢
LUy.llllL.varacrypes LUuaucue.

Cog.Init.Logic_Type loaded.
Cog.Init.Specif loaded.
Cog.Init.Decimal loaded.
Cog.Init.Hexadecimal loaded.
Cog.Init.Number loaded.
Cog.Init.Nat loaded.
Cog.Init.Byte loaded.
Cog.Init.Numeral loaded.
Cog.Init.Peano loaded.

a PSS Y-S | 3 _ 3

¢® Core developer team

e Emilio Jesus Gallego Arias, Inria, Université de Paris, IRIF

e Shachar Itzhaky , Technion

& Past Contributors

e Benoit Pin, CRI, MINES ParisTech

https://github.com/jscoqg

) Lemma gf ensembles (n : : gf ensembles n = gcard (BAut (Fin n)).

Proof.
unfold gf. path via (gcard (BAut (Fin n)) * 1).
- f ap. unfold hfiber. simpl. path via (gcard Unit).
+ apply gcard equiv'. apply equiv_contr unit.
+ apply gcard unit.
- apply mult 1 r.

, Defined.

8 Lemma contr stuff spec (P : FinSet — Type) (HP : V A, Contr (P A))

: spec_from stuff P = ensembles.
Proof.
path via (spec_from stuff (A _ = Unit)).
apply path stuff spec. intro A.
apply equiv_contr unit.
apply path sigma uncurried. refine (_; ).
+ apply path universe uncurried.
refine (equiv_adjointify
apply pr:.
apply (A A = (A; tt)).
intro A. 5
intro A. apply path sigma hprop.
simpl. apply path arrow. intro A.
refine ((transport arrow ) @ ).
refine ((transport const ) @ ).
path via (transport idmap
(path_universe uncurried
(equiv_inverse
(equiv_adjointify pri (A Ao : FinSet = (Ao; tt))
(A Ao : FinSet = 1)
(A Ao : {_ : FinSet & Unit} =

e

path sigma hprop (let (projl sig, ) := Ao in projl sig; tt) Ao

1)))) A).1.

f ap. £ ap. simpl. symmetry. apply path universe V_uncurried. simpl.

path via ((equiv_inverse
(equiv_adjointify pri (A Ao : FinSet = (Ao; tt))
(L Ap : FinSet = 1)
(M Ao : { : FinSet & Unit} =

path_sig_ma_hprop (let (projl _sig, ) := Ao in projl _sig; tt)

Ao 1))) A).1.
f ap. apply transport path universe uncurried.
Defined.

Lemma gf contr stuff spec (P : FinSet — Type) (HP : V A, Contr (P A))
: gf (spec_from stuff P) n = gcard (BAut (Fin n)).

Proof.
refine (_ @ (gf _ensembles )). f ap.
apply contr stuff spec. apply HP.

Defined.

Nicolas Behr, CAP’21, IHES, November 30, 2021

Cogq worker is ready.

===> Loaded packages [init]

Messages g ¢
WL-U{.1lllllL.UatalLtypcos i1Uuaucu.

@cCog.Init.Logic Type loaded.
@cog.Init.Specif loaded.
@cog.Init.Decimal loaded.
@cog.Init.Hexadecimal loaded.
@cog.Init.Number loaded.
@cCog.Init.Nat loaded.
@cog.Init.Byte loaded.
@cog.Init.Numeral loaded.
@cog.Init.Peano loaded.
@cog.Init.Wf loaded.
@cog.Init.Tactics loaded.
@cog.Init.Tauto loaded.

@ /lib/Cog/syntax/number string notation plugin.cma loaded.

@®/1ib/Ccog/ltac/tauto_plugin.cma loaded.
@®/lib/Cog/cc/cc_plugin.cma loaded.
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https://github.com/jscoq

jsCoq

7@ =D addex D
Welcome to the jsCoq Interactive Online System! CGeas -

. : . . . . jsCoq (0.13.3), Cog 8.13.2/81300 (September 2021),
Welcome to the jsCoq technology demo! jsCoq is an interactive, web-based environment for the Coq compiled on Sep 21 2021 15:32:50

Theorem prover, and is a collaborative development effort. See the list of contributors below. ocaml 4.12.0, Js_of ocaml 3.9.0

jsCoq is open source. If you find any problem or want to make any contribution, you are extremely welcome!

We await your feedback at GitHub and Zulip. ¥ V)
Instructions: E C O q

Coq worker is ready.

The following document contains embedded Coq code. All the code is editable and can be run directly on
the page. Once jsCoq finishes loading, you are free to experiment by stepping through the proof and ===> Loaded packages [init]
viewing intermediate proof states on the right panel.

Actions:

Button | Key binding Action
Ve Alt +1 /1 or | Move through the proof.
ALt +N/P

G ALt + Enter or | Run (or go back) to the current point.

Alt +

()] Toggles the goal panel.

Creating your own proof scripts:

The scratchpad offers simple, local storage functionality. It also allows you to share your development with
other users in a manner that is similar to Pastebin.

A First Example: The Infinitude of Primes

If you are new to Coq, check out this introductory tutorial by Mike Nahas. As a more advanced showcase,
C.? Core d 2\V] we display a proof of the infinitude of primes in Coq. The proof relies on the Mathematical Components

library from the MSR/Inria team led by Georges Gonthier, so our first step will be to load it: CED
Emili 1 From Coq Require Import ssreflect ssrfun ssrbool. 0Coq:Init:Logic Type loade;l.
e mIlio 2 From mathcomp Require Import eqtype ssrnat div prime. OCoq.Init.SpeciE loaded.

(/' Cog.Init.Decimal loaded.
: /
- [-ei8  Ready to do Proofs! (/Coq.Init.Hexadecimal loaded.

Once the basic environment has been set up, we can proceed to the proof: (/' Cog.Init.Number loaded.

- . ST , . e (/Coq.Init.Nat loaded.

ry) (* A nice proot o the infinitude o primes, by Georges Gonthier ¥*) () Cog.Init.Byte loaded.
& PaSt COh g gir:)ugz prime above m : {p | m < p & prime p}. @) Coq.Init.Numeral loaded.

(/Coq.Init.Peano loaded.

tation plugin.cma loaded.

N
e Benoit Fin, Ui, vIINES Failsiecil b O ik ot alisi S
60| (** ** Decidable (-1)-stuff ¥*) l q c? CP gln'ma B e. .
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Lemma gf ensembles N)
Proof.
unfold gf. path via (gcard (BAut
- f ap. unfold hfiber. simpl.
+ apply gcard equiv'’
+ apply gcard unit.
- apply mult 1 r.
Defined.

(n

Lemma contr stuff spec (P FinSet — Type)
spec_from stuff P = ensembles.
|20 ENE ¢
path via (spec_ from stuff (A = Unit)).
- apply path stuff spec. intro A.
apply equiv_contr unit.
apply path sigma uncurried. refine (_;
+ apply path universe uncurried.
refine (equiv_adjointify @ ).
* apply pri.
* apply (A A = (A; tt)).
* intro A. -
* intro A. apply path sigma hprop.
simpl. apply path arrow. intro A.
refine ((transport arrow _
refine ((transport const
path via (transport idmap
(path _universe uncurried
(equiv_inverse
(equiv_adjointify pri (A Ao
(L Ap : FinSet = 1)
(M Ao = {_ FinSet & Unit} =
path sigma hprop (let
1)))) A).1.
f ap. £ ap. simpl. symmetry.
path via ((equiv_inverse
(equiv_adjointify pri (A Ao
(A Ao FinSet = 1)
(M Ao = {_
path sigma hprop (let
Ao 1))) A).1l.

) @ ).

f ap.
Defined.

Lemma gf contr stuff spec (P
gf (spec_from stuff P) n =
Proof.
refine (_ @ (gf ensembles
apply contr stuff spec.
Defined.

gcard (BAut

Do iE Ejee
apply HP.

Nicolas Behr, CAP’21,

gf ensembles n

(Fin n))
path via (gcard Unit).
apply equiv_contr unit.

) e ).

FinSet =

(projl sig,

FinSet — Type)

= gcard (BAut

* 1).

(HP

_)-

(Ao;

=

FinSet = (Ao;

FinSet & Unit} =
(projl sig,

apply transport path universe uncurried.

(HP
(Fin n)).

V A,

(EE TS

tt))

tt))

(Fin n)).

(P A))

Ao in projl sig;

apply path universe V uncurried.

:= Ao in projl sig;

V A, Contr (P A))

tt)

Ao

simpl.

(n

tt)

)

Coq worker is ready.

===> Loaded packages [init]

Messages S
WwL-Uy.lllllL.DDAaLAaLypTco l1udaucu.

@cCog.Init.Logic Type loaded.
@cCog.Init.Specif loaded.
@cCog.Init.Decimal loaded.
@cCog.Init.Hexadecimal loaded.
@cCog.Init.Number loaded.

@cCog.Init.Nat loaded.

@cCog.Init.Byte loaded.
@cCog.Init.Numeral loaded.
@cCog.Init.Peano loaded.

@cCog.Init.Wf loaded.

@cCog.Init.Tactics loaded.
@cCog.Init.Tauto loaded.

@ /1ib/Cog/syntax/number string notation plugin.cma loaded.
@ /lib/Cog/ltac/tauto plugin.cma loaded.
@ /1ib/Cog/cc/cc_plugin.cma loaded.
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Towards automated theorem-proving and tactics-learning

Intro
Tutorial Cquammer A TFB ox + by +
X B (Sal¢)
Installation Proof Automation for Dependent Type Theory swX T prAN b e
T=3H FeI= (X+Bx+ 5)
Sauto o o ‘
) 2 _ -
. View on GitHub I he I aCtICIan swix +cos™x= | b--a
St o8 A (Ax Flxx N A x. FxxN [0}
. 48
Tactics 7,
5

Reflection )
Hammer CogHammer is an automated reasoning tool for Coq. It helps in your search for A Sea mless, I nteractive Ta ctic

Options Cog proofs. Learner and Prover for Coq

Debugging Since version 1.3, the CogHammer system consists of two major separate
Papers components.
Relate 1. The sauto general proof search tactic for the Calculus of Inductive Online Demo ( Install Now |

Construction.

About

A“super” version of auto.The underlying proof search procedure is based
on a fairly general inhabitation procedure for the Calculus of Inductive
Constructions. While it is in theory complete only for a “first-order” fragment
of CIC, in practice it can handle a much larger part of Coq's logic. In contrast

https://coghammer.github. 10 https://cog-tactician.github.io

EH math-comp [ hierarchy-builder  public L\ Notifications Y7 Star 55

SMTCoq

<> Code Issues 24 Pull requests 13 Actions Projects Security
Communication between Coq and SAT/SMT solvers

¥ master ~ s ©10t Go to file Code ~ About

High level commands to declare a
SMTCOq @ CohenCyril Merge pull request #2... .- 2fal7b7 21 days agc ommits hierarchy based on packed classes

.github/workflows complete Cl ma Lk mathcomp elpi

Presentation
.Nix complet
SMTCoq is a Coq plugin that checks proof withesses coming from external SAT and SMT

solvers. It provides: .vscode

e a certified checker for proof withesses coming from the SAT solver ZChaff and the SMT HB
solvers veriT and CVC4. This checker increases the confidence in these tools by
checking their answers a posteriori and allows to import new theroems proved by these
solvers in Coq;

e decision procedures through new tactics that discharge some Coq goals to ZChaff, examples
veriT, CVC4, and their combination.

build-support/coq duplication from nix S 8 months ago Releases 6

Hierarchy Builder 1.2.0 (L

https://smtcoq.github. io https://github.com/math—-comp/hierarchy-builder
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®° Mathematical Components

|
O q - CO m m u n Ity Overview [J] Repositories Packages People Projects

Abel ( Public

A coq-community A proof of Abel-Ruffini theorem.

A project for a collaborative, community-driven effort for the long-term maintenance and advertisement of Coq packages.

O Why GitHub? »v  Team Enterprise Explore v Marketplace Pricing = Search Sign in Sign up

coq ssreflect galois-theory mathcomp abel-ruffini
6"9 https://cog-community.org

@® Cog Qg? 3 ‘Z} PAS) @ 0] rl 0] Updated 25 days ago

() Overview Repositories ' 58 Packages People 14 Projects

algebra-tactics ( Public

Ring and field tactics for Mathematical Components

Pinned

(] manifesto (] hydra-battles (] awesome-coq ' :
coq proof-automation ssreflect mathcomp elpi
Public Public Public

Documentation on goals of the cog- Variations on Kirby & Paris' hydra battles and A curated list of awesome Coq libraries, [ ) Coq ‘?-590 ﬁ 16 @ 7 (1issue needs help) I*l 1 Updated 24 days ago
community organization, the shared other entertaining math in Coq (collaborative, plugins, tools, verification projects, and

contributing guide and code of conduct. documented, includes exercises) resources [maintainers=@anton-
[maintainer=@Casteran] trunov,@palmskog] Top |anguages

IS ( Publi
59 %6 @®cCoqg w17 %5 whs %6 analySlS ublic

® Coq @ Shell @ OCaml Dockerfile ; : : ;
E Mathematical Components compliant Analysis Library

@ JavaScript

analysis coq ssreflect mathcomp
] vscoq (] docker-coq (] templates

Public Public Public Most used topics @®coqg %21 Yr107 33 1133 Updated 2 days ago

A Visual Studio Code extension for Coq Docker images of the Coq proof assistant Templates for configuration files and scripts

[maintainers=@maximedenes, @fakusb] [maintainer=@erikmd] useful for maintaining Coq projects coq docker-cog-action mathcomp

nix-action coqg-library apery Public

A formal proof of the irrationality of zeta(3), the Apéry constant

[maintainers=@palmskog, @Zimmi4 8]

TypeScript if? 163 H Dockerfile if? 26 sz 3 Mustache

coq mathcomp

@® Coqg ? 3 ﬁ 7 @? I'l 2 Updated 28 days ago

https://github.com/cog—community

bigenough ( Public

Asymptotic reasoning with bigenough

coq ssreflect mathcomp

"A project for a collaborative, community-driven S W1 TR O T e
effort for the long-term maintenance and cad (pubic

Formalizing Cylindrical Algebraic Decomposition related theories in mathcomp

advertisement of Coq packages.”

@®coqg ¥1 o (o §10 uUpdatedon 26 Oct 2018

58 repOSitOrieS Cog-Combi ( Public

Algebraic Combinatorics in Coq

@®Coq McrL-30 ¥o ww2s (D1 §10 Updated on 20 Oct
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Maintenance: collaborate with/
adopt standards of Cogq-community

wiki entry (e.g., a Lemma)

#hash (auto-generated)
tags

list of cross-references
bibliographic references
code origin references

Human-readable text

LaTeX-based, with annotations permitting generation of
cross-references via NNexus

Machine-readable Coqg-formalization

Including compatible Coq version and possibly different
variants for (1) different Coq versions and/or (2) different
implementation strategies/frameworks/theories.

Examples (both maths & CoQ)

Curated in JsCoq, directly executable from within the
wiki entry in the form of a literate web document and/or
as a bundle of a Coq file with instructions for a
particular Docker image for Coq.

Proof tactics and performance data

Machine-learned tactics data, cross-evaluation of
performance of different variants of implementations, user
annotations on different Coq versions/libraries used




A proposal for a wiki-topic case study: HoTT Species

COMBINATORIAL SPECIES AND
LABELLED STRUCTURES

Brent Abraham Yorgey

L

A DISSERTATION
in
Computer and Information Science

Presented to the Faculties of the University of Pennsylvania
in
Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy

2014

https://repository.upenn.edu/edissertations/1512/

H jdoughertyii / hott-species ( Public

<{> Code Issues Pull requests Actions

¥ master ~ F 1branch © 0 tags

[\ Notifications ¢ Star 11 % Fork

Projects Security Insights

Go to file Code ~ About

Combinatorial species in HoTT

ﬁ jdoughertyii mixed up ogfs and egfs wrt labeling deds5a7 on 24 May 2015 9 10 commits

coq correcting the coproduct
.gitignore adding notes
LICENSE Initial commit
README.md Initial commit

references.bib initial commit

species.pdf mixed up ogfs and egfs wrt labeling

species.tex mixed up ogfs and egfs wrt labeling

README.md

hott-species

Combinatorial species in HoTT

[0 Readme

7 years ago 53 MIT License

7 years ago
7 years ago Releases
7 years ago No releases published

7 vyaarc ann

Species in HoTT

John Dougherty
May 23, 2015

Abstract

Combinatorial species were developed by Joyal (1981) as an abstract treatment of enumerative com-
binatorics, especially problems of counting the number of ways of putting some structure on a finite set.
Many of the results of species theory are special cases of more general properties of homotopy types, mak-
ing homotopy type theory (HoTT) a useful tool for dealing with species. These tools become even more
apposite when one generalizes species to higher groupoids, as Baez and Dolan (2001) do. What follows are
notes I wrote while learning about species. They’re mainly summary of the notes Derek Wise took during
John Baez’s “Quantization and Categorification” seminar in AY2004 (Baez and Wise, 2003, 2004b,a), with
some reference to Bergeron et al. (2013), Baez and Dolan (2001), and Aguiar and Mahajan (2010).

https://github.com/jdoughertyii/hott-species
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A proposal for a wiki-topic case study: HoTT Species

Defining species
Computing cardinalities
v Speciation
Coproduct
Hadamard product
Cauchy product
Composition
Differentiation
Pointing
Inhabiting
v Examples
(-2)-stuff
(-1)-stuff
O-stuff
Fock space
Cayley's Formula
References

~ | | $ee fhese Aumbers
IEF s a.. Hom (F'(z)‘:Zﬁ% 2" where

N S BT TRMRLETTR e W o - R o TEET TTrmmee TRAS

sﬁ(( ‘1199, An € 'R+ = [0,“) (fa‘m—) 3*0“1’0‘38 =\“3mupoiés

are CarJ.‘v\akkeS O‘ .

= e

»l

SH‘AC“"‘WQ HP& An & ’N (F‘\“\‘k) sets = O"a‘b“P;"S

1
2
5
5
o
6
7
8
9
9

an, e {o,1§ = jF1¥ fonth wlwes = -|-groupeids

3 3

-

3

3

§
=4
=

(©

(

o
<
v
n~
'Y
o
Y
W

M
p3

m
(e
LN

112
oA

._(
A~

True 2 the oy

—
—

EY
W

— =
W W

John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

https://math.ucr.edu/home/baez/qg-spring2004/s04week@3.pdf
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John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

https://math.ucr.edu/home/baez/qg-spring2004/s04week@3.pdf
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John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)
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https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf
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The central aims of this workgroup consist in providing an interdisciplinary forum for exploring the diverse
aspects of applied category theory relevant in graph transformation systems and their generalizations, in
developing a methodology for formalizing diagrammatic proofs as relevant in rewriting theories via proof
assistants such as Coq, and in establishing a community-driven wiki system and repository for mathematical
knowledge in our research field (akin to a domain-specific Cog-enabled variant of the nLab). A further research
question will explore the possibility of deriving reference prototype implementations of concrete rewriting
systems (e.g., over multi- or simple directed graphs) directly from the category-theoretical semantics, in the
spirit of the translation-based approaches (utilizing theorem provers such as Microsoft Z3).

e To receive regular updates on the GReTA EXACT workgroup sessions, please consider subscribing to
our mailing list.

e To suggest speakers and topics for upcoming sessions, and for any other form of feedback and
discussions, please consider joining the GReTA EXACT Mattermost channel.
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Friday November 12, 2021, 10:00 CET

SMTCoq: the power of
SMT solving in Coq
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Applied Category Theory)
online workgroup
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Nicolas Behr, CAP’21, IHES, November 30, 2021
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. GReTA-EXACT session #1: "SMTCoq: the power of SMT solving in Coq"

i\ GReTA Seminar

..z GReTA-ExACT session #2: "Hierarchy Builder"
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GReTA Seminar

. GReTA-EXACT session #3: "Formalizing Category Theory using Type Theory:

A Discussion"

GReTA Seminar * Scheduled for 10/12/2021, 15:00

=" GReTA seminar #20: "GReTA-ExACT: towards Executable Applied Category

Theory"

GReTA Seminar


http://coreact.wiki
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