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ō ī

i

m(2) (1)FPCPO

POCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

FPCPO

O K I

rm(X) X X

o i

m∗

o

m

i

m

( -) linear Double-Pushout (DPO)ℳ

( -) linear Sesqui-Pushout (SqPO)ℳ

non-linear Double-Pushout (DPO)

non-linear Sesqui-Pushout (SqPO)



Nicolas Behr, CAP’21, IHÉS, November 30, 2021

Four flavours of categorical rewriting semantics
O K I

rm(X) X̄ X

m⇤

o

m̄

ō ī
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Quasi-topoi — a natural setting for non-linear rewriting
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r2 r1

TT

1:1

r2 r1
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⇣
O

r
(�� I

⌘
�
⇣

O
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(�� I

⌘

(iso-class of a) rule basis vector 
of a vector space      (R, ⇤R)

�(r2) ⇤R �(r1) :=

X

µ

�
⇣

r2

µCT r1

⌘
Definition:  the rule algebra product                                    is defined via

“sum over ways to compose the rules”

⇤R : R⇥R ! R

The rule algebra               is an associative unital algebra, 

 with unit element                 .
(R, ⇤R)

�(? ( ?)

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem
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Ĉ
�

O2 I2 O1 I1

X2 X1 X0

O2 I2 µ O1 I1

O21 P21 I21

X2 X0

r2 r1

TT

1:1

r2 r1

r2
µ!Tr1

T

�(r2) ⇤R �(r1) :=

X

µ

�
⇣

r2

µCT r1

⌘

Theorem                            
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�
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.
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12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:
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For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

⇤

⇤
⇤

⇤
P1 := P2 := P3 := P4 :=

Choose some patterns:
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO
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):
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
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↵
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↵
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In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

⇤

⇤
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• generate structure S via applying 
rewriting rules to some initial 
configuration “in all possible ways” 

• count patterns via applying special 
types of rewriting rules 

• formulate generating functions via 
linear operators associated to 
rewriting rules 

Key tool: the rule-algebra formalism!
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A rule-algebraic generating-functionology

Definition   Let  be defined via  for arbitrary PRBT iso-class  . (Note: this permits to 
implement the operation of summation over coefficients)

⟨ | ⟨ | t⟩ := 1ℝ t
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+LMPUP[PVU �� /HW �: EH D OLQHDU RSHUDWRU �WKH NLULYH[VY�� OHW �PR, ... , �PK EH D FKRLFH RI �ILQLWHO\
PDQ\� WH[[LYU VIZLY]HISLZ� DQG OHW |syi 2 �* GHQRWH WKH PUP[PHS Z[H[L� 7KHQ WKH L_WVULU[PHS
TVTLU[�NLULYH[PUN M\UJ[PVU �,4.-� G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i ����

+HUH� ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD� DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTHS ]HYPHISLZ�
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&RQVHTXHQWO\� WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH JVTIPUH[VYPHS Z[Y\J[\YLZ

JVU[HPULK PU [OL M�[O NLULYH[PVU� ZLWK ;M(s) WKH^LPNO[ RI D FRQILJXUDWLRQ s LQ WKH M�WK
JHQHUDWLRQ�

š )RU JHQHULF YDOXHV RI !� G(�;!) HYDOXDWHV DV IROORZV�

G(�;!) =
X

n�0

�n

n! h| e
!·Ô
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Combinatorial evolution equations
7KH MVYTHS ,4.- L]VS\[PVU LX\H[PVU IRU G(�;!) UHDGV DV IROORZV�

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) ����

$SSO\LQJ WKH YHUVLRQ RI WKH Q\TW�JSVZ\YL [OLVYLT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ�
WLFV �'32 RU 6T32�� WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU L]VS\�
[PVU LX\H[PVU VU MVYTHS WV^LY ZLYPLZ LI WKH IROORZLQJ WVS`UVTPHS Q\TW�JSVZ\YL KROGV�

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. ����
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!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k ����

,I D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0)� WKH MVYTHS L]VS\[PVU LX\H[PVU ���� IRU WKH (0*)
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)
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conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF ).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T  - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

( ∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l ) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern  : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly
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We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:
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Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l ) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.
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eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern  : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly



Nicolas Behr, CAP’21, IHÉS, November 30, 2021

N. Behr 13

conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
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is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c
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Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
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According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:
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This result is sufficient to perform our first moment-EGF computation:
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We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

( ∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p
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. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l ) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.
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their embedded discrete-time Markov chains and certain types of generating function expressions in
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of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.
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An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:
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"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)
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In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
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⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

( ∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l ) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.
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This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
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This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Pattern  : an edge of any typeE

Example: generating planar rooted binary trees (PRBTs) uniformly
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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. . .
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, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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⇣
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⇣
. . .

⇣
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⌘
. . .

⌘⌘
. (52)

Thus in particular
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⌘
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⇣
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⌘
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As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
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T
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We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
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⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
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�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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Thus in particular
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⌘
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As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤
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, ÔP3 :=

⇤

⌘ Â
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T
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We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =
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T
,
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⇤
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+
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L +
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⇤
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⇤
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⇤

R
�

⇤
⇤

�
⇤

R �
⇤
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� . . .= Ĝ
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While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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Thus in particular
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⇣
eadw1Ô2 (R̂)

⌘
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⌘
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As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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⇣
eadµÔP2
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

Example: generating planar rooted binary trees (PRBTs) uniformly
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

Example: generating planar rooted binary trees (PRBTs) uniformly
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]
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ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi
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∂xi
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closure. Due to the complexity of the computations, we present here only the final results:
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Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):
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⇣
eadµÔP2 (Ĝ)
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Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)
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Example: generating planar rooted binary trees (PRBTs) uniformly
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Combinatorial evolution equations
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Main objectives of the CoREACT/GReTA ExACT initiative

• Development of a methodology for diagrammatic reasoning in Coq 
• Formalization (in Coq) and certification of a representative collection of 

axioms and theorems for compositional categorical rewriting theory 
• Development of a Coq-enabled interactive database and wiki system 

• Development of a CoREACT wiki-based “proof-by-pointing” engine 

• Executable reference prototype algorithms from categorical structures in 
Coq (via the use of SMT solvers/theorem provers such as Z3)
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PDF LaTeXML

HTML

(semi-) automatic cross-linking 
provided via NNexus system 

LaTeX sources 
(hosted on GitHub)

• J. Lurie’s online textbook on 
categorical homotopy theory 

• technology based upon online 
tags view via the Gerby system

https://kerodon.net

https://planetmath.org

https://ncatlab.org https://gerby-project.github.io

A (very non-exhaustive!) view on wiki systems in mathematics/ (A)CT

https://kerodon.net
https://planetmath.org
https://ncatlab.org
https://gerby-project.github.io
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https://leanprover.github.io

Jeremy Avigad: "Formal mathematics, 
dependent type theory, and the Topos Institute" 

https://youtu.be/Kpa8cCUZLms 

Kevin Buzzard: "What is the point of Lean's 
maths library?" 

https://youtu.be/alByz_LoANE

https://github.com/agda

Hu Jason, CPP21: “Formalizing Category Theory in Agda” 

https://youtu.be/a2txkoybw2M

https://coq.inria.fr

EPIT Spring School on HoTT: Bas Spitters Part 1 (Introduction to Coq and HoTT) 

https://youtu.be/k8T9L0qR38o

A (very non-exhaustive!) view on proof assistants in mathematics

https://youtu.be/Kpa8cCUZLms
https://youtu.be/alByz_LoANE
https://leanprover.github.io
https://youtu.be/a2txkoybw2M
https://github.com/agda
https://youtu.be/k8T9L0qR38o
https://coq.inria.fr
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Coq — overview

https://coq.inria.fr

• 1984 implementation of the Calculus of Constructions at INRIA-Rocquencourt by 
Thierry Coquand and Gérard Huet 

• 1991 Calculus of Inductive Constructions (CIC) by Christine Paulin-Mohring 
• 2002 completion of the four color theorem proof in Coq by Georges Gonthier 

and Benjamin Werner (start of the SSReflect development) 
• (…)  
• 2012 completion of the Feit–Thompson theorem by Georges Gonthier et al. 
• (…) 
• more than 200 people contributed over the past >30 years (most recent stable 

version: 8.14)

https://coq.inria.fr
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Coq — famous milestones
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Coq-combi

Author: Florent Hivert 
https://github.com/math-comp/Coq-Combi

https://www.lri.fr/~hivert/Coq-Combi/

https://github.com/math-comp/Coq-Combi
https://www.lri.fr/~hivert/Coq-Combi/
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Coq-combi
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Coq-combi
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Major usability concerns (?)
• Difficult and work-intensive to install/compile from source on some systems 

• As both a proof assistant and a programming language, understanding the theory behind Coq and 
acquiring a working knowledge of the semantics/technical peculiarities of the Coq system is quite work-intensive 

• Finding and analyzing proofs is mostly a manual (if assisted) process — standardization and searchability? 

• Curation, quality control and medium- to long-term maintenance of collections of proofs is challenging 

• “Burden of interdisciplinarity” — documenting a given piece of mathematical knowledge in a wiki system 
requires substantial amounts of human-readable and potentially highly technical text, potentially with very 
involved mathematical examples for illustration, while designing corresponding proofs in Coq requires a form 
of programming which has to be aided by some form of Coq API documentation and ideally a library of code 
examples 

• …
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jsCoq

https://github.com/jscoq

https://github.com/jscoq
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jsCoq
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https://github.com/jscoq

jsCoq
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Towards automated theorem-proving and tactics-learning

https://coqhammer.github.io https://coq-tactician.github.io

https://smtcoq.github.io https://github.com/math-comp/hierarchy-builder

https://coqhammer.github.io
https://coq-tactician.github.io
https://smtcoq.github.io
https://github.com/math-comp/hierarchy-builder
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Coq-community

“A project for a collaborative, community-driven 
effort for the long-term maintenance and 
advertisement of Coq packages.” 

• 58 repositories

https://github.com/coq-community

http://www.apple.com/uk
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The coreact.wiki proposal

(graph-) databaseknowledge graphs

wiki entry (e.g., a Lemma)
#hash (auto-generated) 
tags 
list of cross-references 
bibliographic references 
code origin references

LaTeX-based, with annotations permitting generation of 
cross-references via NNexus

Human-readable text

Machine-readable Coq-formalization

Examples (both maths & Coq)

Proof tactics and performance data 

Including compatible Coq version and possibly different 
variants for (1) different Coq versions and/or (2) different 
implementation strategies/frameworks/theories.

PDF & HTML textbook

Maintenance: collaborate with/ 
adopt standards of Coq-community

Curated in jsCoq, directly executable from within the 
wiki entry in the form of a literate web document and/or 
as a bundle of a Coq file with instructions for a 
particular Docker image for Coq.

Machine-learned tactics data, cross-evaluation of 
performance of different variants of implementations, user 
annotations on different Coq versions/libraries used
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A proposal for a wiki-topic case study: HoTT Species

https://repository.upenn.edu/edissertations/1512/

https://github.com/jdoughertyii/hott-species

https://repository.upenn.edu/edissertations/1512/
https://github.com/jdoughertyii/hott-species
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A proposal for a wiki-topic case study: HoTT Species

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf

John Baez, Quantum Gravity Seminar — Spring 2004: Quantization and 
Categorification, Week 3 - Evaluating and composing stuff types (notes by D. Wise)

https://math.ucr.edu/home/baez/qg-spring2004/s04week03.pdf
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coreact.wiki

http://coreact.wiki


Merci beaucoup !


