¢ S INSTITUT
DE RECHERCHE

ENINFORMATIQUE

FONDAMENTALE

université

gDiDEROT

Université de Paris

Tracelet Hopf algebras and decomposition spaces

Joint work with Joachim Kock (UA Barcelona)
ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr
Université de Paris, CNRS, IRIF

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

COMPUTER SCIENCE

- semantics and stochastic rewriting theory
- concurrency theory
- algorithms for bio- and organo-chemistry

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Plan of the talk

2. Categorical rewriting theory

3. From rewriting to tracelets

4. Tracelet decomposition spaces
5. Tracelet Hopf algebras

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

(© 2011 International Press
Adv. Theor. Math. Phys. 14 (2010) 1209-1243

Combinatorial algebra for

. The algebras of graph rewriting
second-quantized Quantum Theory

Nicolas Behr*!, Vincent Danos'?, Ilias Garniert! and Tobias
Heindel??

Pawel Blasiak!, Gerard H.E. Duchamp?, Allan I. Solomon?*, ILaboratory for Foundations of Computer Science, School of
Andrzej Horzela! and Karol A. Penson® Informatics, University of Edinburgh, Informatics Forum, 10
Crichton Street, Edinburgh, EH8 9AB, Scotland, UK
’LFCS, CNRS & Equipe Antique, Département d’Informatique de
’Ecole Normale Supérieure Paris, 45 rue d’Ulm, 75230 Paris Cedex
05, France
SDepartment of Computer Science, Datalogisk Institut (DIKU),
Kgbenhavns Universitet, Universitetsparken 5, 2100 Kgbenhavn O,
Denmark

December 20, 2016

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Idea: represent transformations of discrete (= vertex-only) graphs as a © 2011 International Press
. i Adv. Theor. Math. Phys. 14 (2010) 1209-1243
certain form of diagrams

{ J) - m
Elementary one-step dlagrams- Combinatorial algebra for
; . ‘ Oulput: & vertex second-quantized Quantum Theory
-+ Create a vertex: v = H
Pawel Blasiak!, Gerard H.E. Duchamp?, Allan I. Solomon?*,
Andrzej Horzela! and Karol A. Penson?
- Delete a vertex: V= R

O iInput: a vertex
The algebras of graph rewriting

Nicolas Behr*!', Vincent Danos'?, Ilias Garnier*' and Tobias
Heindel??

Laboratory for Foundations of Computer Science, School of
Informatics, University of Edinburgh, Informatics Forum, 10
Crichton Street, Edinburgh, EH8 9AB, Scotland, UK
2LFCS, CNRS & Equipe Antique, Département d’Informatique de
I'Ecole Normale Supérieure Paris, 45 rue d’Ulm, 75230 Paris Cedex
05, France
SDepartment of Computer Science, Datalogisk Institut (DIKU),
Kgbenhavns Universitet, Universitetsparken 5, 2100 Kgbenhavn),
Denmark

December 20, 2016

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Idea: represent transformations of discrete (= vertex-only) graphs as a
certain form of diagrams

Elementary “one-step” diagrams:
’ output: a vertex

A\

Create a vertex: pl H

>

Delete a vertex: 1% .
‘ iInput: a vertex

Generic diagrams:) - P
d=[(0,1,m)]. T
O — set of output vertices ‘

[— set of input vertices 5 ®
m C O X I — (one-to-one) binary relation _ E

(© 2011 International Press
Adv. Theor. Math. Phys. 14 (2010) 1209-1243

Combinatorial algebra for

second-quantized Quantum Theory

Pawel Blasiak!, Gerard H.E. Duchamp?, Allan I. Solomon?*,
Andrzej Horzela! and Karol A. Penson?

The algebras of graph rewriting

Nicolas Behr*!', Vincent Danos'?, Ilias Garnier*' and Tobias
Heindel??

Laboratory for Foundations of Computer Science, School of
Informatics, University of Edinburgh, Informatics Forum, 10
Crichton Street, Edinburgh, EH8 9AB, Scotland, UK
2LLFCS, CNRS & Equipe Antique, Département d’Informatique de
I'Ecole Normale Supérieure Paris, 45 rue d’Ulm, 75230 Paris Cedex
05, France
SDepartment of Computer Science, Datalogisk Institut (DIKU),
Kgbenhavns Universitet, Universitetsparken 5, 2100 Kgbenhavn),
Denmark

December 20, 2016

(O,I,m)~ O, I'’'m") & Hdw:0 35 0O, (1: 15 I : ((0, 1) €Em < (w(o),1(1)) E m’)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Diagrammatic composition:

5(d2) *9 5(d1) — Z 5 (dz <]m21 d1> o d2 4m21 dl — [(02 -+ 01, 12 -+ Il’ m2 + le -+ ml]N
my €M 4,(d,)
matchings (i.e. one-to-one mappings) of outputs of d2 INto inputs of dl d2 O
® ¢
M1
d, ° o

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Diagrammatic composition:

5(d2) *9 5(d1) .= Z 5 (d2 <]m21 dl) o d2 4m21 dl L= [(02 + 01, 12 + Il’ m2 + le + ml]N
my €M 4,(d,)
matchings (i.e. one-to-one mappings) of outputs of d, into inputs of d, O
¢ o

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Diagrammatic composition:

5(d) *58(d) =) 8 (d2 <, d1> . dy <, dy =10y + O L+ Iy my + myy +my]
my €M 4,(d,)
matchings (i.e. one-to-one mappings) of outputs of d2 Into inputs of dl O
® o
dy <, d =

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Diagrammatic composition:

5(d) *58(d) =) 8 (d2 <, d1> . dy <, dy =10y + O L+ Iy my + myy +my]
my EM 4,(dy)
matchings (i.e. one-to-one mappings) of outputs of d2 Into inputs of dl O

N

dy <, d =

(9, *4) is an associative unital algebra,
with unit element d, := o(|(D, D, D)].)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

>

vii=[({«}, 3, D). :
Elementary diagrams: e:=[({e},{e},{(e,e)D)]_
vi=[(D,{}, D).

>

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, -) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

vii=[({},2,0)]. = :
Elementary diagrams: e =[({e},{e},{(e,0)})]. = I
vi=[@,{+} o). =

Notation: disjoint union on diagrams d, Wd; := [(O, + O, L, + I;,my + m)]. = d, < d,

= every equivalence class d may be completely characterized by its “connected components”, in the sense that
VdeD: 3k, me Z,y:d= dk,f,ma dk,f,m = T Uk YO E 1y o8 m

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

® B
VT L= [({ ° }a D, g)]N = _ :
Elementary diagrams: e:=[({ehteh il)DL = I

vi=vi i =[(g,{*},@)]. = z
® i

Heisenberg-Lie algebra
Lo = ({6(),6(v"),8(e)},[.,.1) Wwith [A, B] := A*, B — B*_, A), with the

only non-zero commutator given by [6(v), (v = &(e).

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

o :
vi=[({e), @, @], £ I

Va\

Elementary diagrams: e =[({e},{e},{(e,e))]. =
yi=v' = (D, {},D)]. =

Heisenberg-Lie algebra
Lo = ({6(),6(v"),8(e)},[.,.1) Wwith [A, B] := A*, B — B*_, A), with the

only non-zero commutator given by [6(v), (v = &(e).

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,
I(Z 3)
(6(v) @ 6(v7) — 6(vT) ® 6(v) — (e))

U(L) =

has a normal-ordered basis with elements of the form U, ;,, := S(vNP*R (ML ® 8(e)®™ (k,I,m € Z.)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

o :
vi=[({e), @, @], £ I

Va\

Elementary diagrams: e =[({e},{e},{(e,e))]. =
yi=v' = (D, {},D)]. =

Heisenberg-Lie algebra
Lo = ({6(),6(v"),8(e)},[.,.1) Wwith [A, B] := A*, B — B*_, A), with the

only non-zero commutator given by [8(v), 8(v1)] = &(e).

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,
I(Z 3)
(6(v) @ 6(v7) — 6(v™) ® 6(v) — (e))

U(L) =

has a normal-ordered basis with elements of the form U, ;,, := S(vNP*R (ML ® 8(e)®™ (k,I,m € Z.)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,

A I(Zs)
71T (8(v) @ 8(vT) — (v ® B(v) — S(e))

has a normal-ordered basis with elements of the form U, ;,,, := S(vHP*R (@ ® 8(e)®™ (k,I,m € Z.)

Notations:
. disjoint union on diagrams d, Wd; :=[(O, + O, L, + I;,my, + m))]. = d, 4, d,

. dkfm .= VTLﬂkH'JVUij'Jewm

Theorem |[Behr et al. 20106]

There exists a isomorphism of algebras (<, *;)

e |

> U(L), defined via p(6(dy 4 ,,)) = Uy ¢ -

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Interesting fact: the universal enveloping algebra % (£ @) IS a (hon-commutative, co-commutative) Hopf algebra.
= one may verify that the isomorphism @ extends to a Hopf-algebra isomorphism !

Coproduct of the diagram algebra

0 B U sd)=o(|4Jd) (@ € {v,ve))
- B xeX
° R . 5(|4 d):= 8(dy)
T XeEY
: > ¢ : *> ° AG@):= Y 8|+ d) ® 5 |4 &)
: - - : S YCX yeY z€X\Y

Theorem [Blasiak et al. 2011, Behr et al. 2016]

(2,%4,A)is a Hopf algebra, with unitn : K — 2 : 1, = d(dg) and counite : D — K : 0(d) = 04,4

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Elementary diagrams:

dkfm::VT&kav&waewm pToo= .

y =

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On the interesting special case of discrete graph rewriting

Elementary diagrams:

d , =y gy lyedm = I

V=

Example diagrammatic normal-ordering formula

4 k
é(dkz,fz,mz) *@5(dk1,f1,m1) = Z (2) 7"(1) 5(dkl+k2—r,f1+fz—r,m1+m2+r)

I

of ways to form
1 output-to-input “wirings
(disregarding the order)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

COMPUTER SCIENCE

- semantics and stochastic rewriting theory
- concurrency theory
- algorithms for bio- and organo-chemistry

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Plan of the talk
1. Discrete rewriting and diagram Hopf Algebras
3. From rewriting to tracelets

4. Tracelet decomposition spaces
5. Tracelet Hopf algebras

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Double Pushout (DPO) rewriting

D+—o— K

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

3 ——

Double Pushout (DPO) rewriting

O+——o0— K —i—— 1
) pushout ;r[

complement l

X ; ¢

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Double Pushout (DPO) rewriting

O+—o— K i — 1
T:j(pUShOUt ;j[co?r:l;;(r)rl\l;nt ;j[
'm (X X 1 > X

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Organic chemistry via DPO-type rewriting (!)

o- C o C
e VA 7
~c” C
H>
&
N C
e
2
\CHZ

Source: Algorithmic Cheminformatics Group, SDU Odense

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Organic chemistry via DPO-type rewriting (!)

o- C o C
e J /
~c” C

bk 2
e s BT kc/o\ Tt -t
l\‘l/ ® c|: /CHZ_’ |\‘| c‘:
/e ¥ O HCZ

H-,C H H-,C
~, ~ch,

Source: Algorithmic Cheminformatics Group, SDU Odense

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Organic chemistry via DPO-type rewriting (!)

0= C O C o—°C
N+/ clz‘ N/ G N/ cI:
Ne”” c cZ
/gz\ /El\ 0 /E!z\ /EI\ 0 /E'z\ /E'\ 0
HCo- C7 e\ HC o €7 TN HC o—C7 S\
A N i O R e A R S
e 2 - AL
2 2 2
~ch, (1 ~ch,

Source: Algorithmic Cheminformatics Group, SDU Odense

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

— GReTA - Graph Transformation Theory and Applications Q @

LUniversite
cde Paris

B\

-

RMATIOUE
ENTALE

ENIN
“‘9‘"

INSTITU
DEREC

\é
»
|
-

New seminar series since November 2020,

co-hosted by Nicolas Behr, Jean Krivine and Reiko Heckel
https://www.1rif.fr/~greta/

DPO rewriting theory does not really stop at this first definition...

O < O K ? > [

[|

m’ (2) m (1) m

| ! !
rm (X)) < 5 X i > X

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO rewriting theory does not really stop at this first definition...

3*_<Q

Ql
~

e &

L El rtcw <le v

Artwork by Angelika Villagrana

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO rewriting theory does not really stop at this first definition...

Artwork by Angelika Villagrana

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Input graph Xo

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘create an edge’

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘create an edge’

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘delete an edge”

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘create an edge’

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘create an edge”

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

a TRACELET
(of length 5)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Plan of the talk

1. Discrete rewriting and diagram Hopf Algebras
2. Categorical rewriting theory

4. Tracelet decomposition spaces
5. Tracelet Hopf algebras

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem

o1 r'io
Oy 4 151 O19 4 110
/ - \ / o \
X2 - Xl ‘ X()

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem

roq r'10
Or; 4 21 O10 4 110
/ DPO DPO \
Oy - ‘ 120
DPO DPO
N N
Ro < X1 * X0

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem

1 r'10
Op; - 21 O10 - 110
/ DPO DPO \
Oy - ‘ 120
DPO DPO
2 2
Ko + X1 * X0
DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “synthesis”

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “synthesis”

DPO

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “synthesis”

o1 10
Oy “ 151 O1g 4 l10
/ DPO DPO \
Oy - ‘ |20
DPO DPO
~N~ ~N~
Ro < X1 * X0

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “synthesis”

ol r1o
Oy < 151 O19 4 l10
/ DPO DPO \
Oy - ‘ 120
N N
Xg XO
DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “synthesis”

O10 120
N N

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “analysis”

ro1 r10
Op; “ 21 O10 4 110
/ DPO DPO \
Oy - ‘ 120
~N~ ~N~
Xg XO
DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “analysis”

ol 1o
Oy ¢ 151 O19 4 l10
z///)\ DPO DPO A\\\N
Oy - ‘ 120
DPO DPO
N N
Ko + X1 * X0
DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “analysis”

o1 10
Oy “ 151 O1g 4 l10
/ DPO DPO \
Oy - ‘ |20
DPO DPO
~N~ ~N~
Ro < X1 * X0

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “analysis”

DPO

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

DPO-type concurrency theorem — “analysis”

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

S N S

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

o1 o
Oy 4 151 O “ l10
/ - \ / B \
X2 - Xl - XO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

21
Oy 4 151 O19 4 l10
/ DPO DPO \
Ogp <4 < 20
N
DPO DPO
~
Xy 4 X1 4 Xo

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

O 4 21 019 +—2 l10
L(///////)\ DPO DPO ,&\\\\\\Ej
. y,
DPO DPO
y, y,
DPO DPO
Xy £ Xy 4

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

DPO

DPO

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

DPO

DPO

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

DPO

DPO

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

TRACELET (of length 3)

o1
Oy 4 151 O19 <

DPO

DPO

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

From the DPO-type concurrency theorem to tracelets

TRACELET (of length 3)

o1
Oy 4 151 O19 <

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 1

O «

¢ K 5

O <

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

¢ K 5

Tracelet generation

Definition: tracelets of length 2

021) ra21

10
|21 O10 ’

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 2

021) ra21

10
|21 O10 ’

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 2

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 2

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

o1 10
Oy < 151 O 4 l10
k(//////)\ DPO DPO' /k\\\\\\ﬁi
Oy 4 120
N
DPO ' DPO "
~
z 130
01 21 10 10
DPO DPO
Y,
130

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet generation

Definition: tracelets of length 3

DPO

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet composition

4 4 4 L
[[[[o o o o

SN SN m N S N

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet composition

4 4 4 L
[[[[o o o o

SN SN m N S N

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet composition

4 4 4 4
o o o o ® ® ® ®

m N S N m N S N

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet composition

4 4 4 4
o o o o ® ® ® ®

N e N S N e N

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet composition

4 4 4 L
[[o o [[® ®

N S N o N S N

4 4
® ® ® ®

m N e S S e N e N

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Plan of the talk
1. Discrete rewriting and diagram Hopf Algebras
2. Categorical rewriting theory

3. From rewriting to tracelets

5. Tracelet Hopf algebras

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Motivation: key property of compositional rewriting theory

\

1)

% P P
S —

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Tracelet Hopf algebras and decomposition spaces

Nicolas Behr Joachim Kock

Univ. de Paris, CNRS, IRIF, F-750006, Paris, France Universitat Autonoma de Barcelona &
Centre de Recerca Matematica

nicolas.behr@irif.fr
kock@mat.uab.cat

<— d3
d, T —d—
{*} 50 — X1 <— d X2 S1 — X3
<— dy 4 SO —> <— dy s
0
<— dy

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

codom(d,)

First hint: at length 3, the top and
bottom diagrams in the equivalence
suggest four “forgetful” mappings,
which are the candidates for the

face maps d,, ..., d;

<— d3
—d eI g
|
k) S50 X —d X, s Xa
%d() SO% %dl
<— dy J— 50 —
0

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

<— d3
<— dj L ST —» <— d> M
{*} S0 — X1 <— d X2 51— X3
<— dy Py S0 —> <— dy S0 —3
0
<— do

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space
<— d3

 d <— dy P 4 §2 —>
]
{*} ! S0 — X1 <— dj Xz : s1 — X3
<— dy Py S0 —> <— dy S0 —3
0
<— do
1
I10

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space
<— d3

— dp 52 —» 1
< d, S| — <— d
{x} 50— X —d X> 51— X3
< d S0 — <— d
<— dj 4 S0 —
0
1
O10
Kio
O21
I10
2

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

<— d
— d k 52 —» 1
{*} so — X $—d; X7 51— X3 N
<— dp Ja S0 — <— dj S0 —s
0
< dp
1
Op +—— | O |

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space
<— d3

— dp 52 —» 1
< d, S| — <— d
{x} 50— X —d X> 51— X3
< d S0 — <— d
<— dj 4 S0 —
0
1
O10
Kio
O21
I10
2

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

<— d3
—d il ——— L
fx} 50— X —d X, — 51— X; ,
< dj S0 — <— d
<— do S0 —»
<— do
L 121
° ,/7\
Ka1 @ POC

PB - PO

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

Xg > Xo
_
dl dl
X2 ? X1
do

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Construction of a suitable decomposition space

<— d3
<— d e s — <— dp i
{*} 50 — X1 <— d; X2 S1 — X3
<— do Py SO —> <— d; P
0
<— dy

Xeo IS @ decomposition space. This means that for all 0 < i < n the two squares

dyt1 dy
Xn—H > Xn XrH—l ? Xn
d; d; dit1 d;
Xn 7 > Xn—l Xn a0 > Xn—l

are (homotopy) pullbacks.

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Plan of the talk

1. Discrete rewriting and diagram Hopf Algebras
2. Categorical rewriting theory

3. From rewriting to tracelets

4. Tracelet decomposition spaces

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘Sequential” vs. “diagrammatic” interpretation of tracelets

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

‘Sequential” vs. “diagrammatic” interpretation of tracelets

EA--
D

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

AR

N

?

Y
! AR

1)

‘Sequential” vs. “diagrammatic” interpretation of tracelets

MR

L

=y =TI1S(=4,U=¢U =7) —

=, — abstraction equivalence (= point-wise isos) N

=¢ — shift equivalence (= "sequential commutativity”)

=, — equivalence up to trivial tracelets, i.e., for any

tracelet T, we define T = TH£Ty =5 Ty'sT

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

=

=

[

1)

‘Sequential” vs. “diagrammatic” interpretation of tracelets

MR

L

=y =TI1S(=4,U=¢U =7) —

=, — abstraction equivalence (= point-wise isos) N

=¢ — shift equivalence (= "sequential commutativity”)

=, — equivalence up to trivial tracelets, i.e., for any

tracelet T, we define T = TH£Ty =5 Ty'sT

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

=

=

[

1)

‘Sequential” vs. “diagrammatic” interpretation of tracelets

CND
\) pd pd
N
L
—S
C N Y
- o o o o ! R e e
=N .—VSt(:AU=SU=T) T :/ \/ \
=, — abstraction equivalence (= point-wise isos) N

=¢ — shift equivalence (= "sequential commutativity”)

= — equivalence up to trivial tracelets, i.e., for any . _
T Ty Ty = [TyosTyl. = [Tg'0£T,]-
tracelet T, we define T = TH£Ty =5 Ty'sT

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

|racelet algebra structure B. & Kock, 2021]

Definition: Primitive tracelets

Let Ty := T /=, denote the set of =y\-equivalence classes of tracelets. Then Brim(Ty), the set of primitive tracelets, is defined as

Peim(Ty) :={[T]=y|T # To\ ATa, Ig# Tg: T =N TaW Tg}.

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

|racelet algebra structure B. & Kock, 2021]

Definition: Primitive tracelets

Let Ty := T /=, denote the set of =y\-equivalence classes of tracelets. Then Brim(Ty), the set of primitive tracelets, is defined as

Peim(Ty) :={[T]=y|T # To\ ATa, Ig# Tg: T =N TaW Tg}.

Definition: Tracelet K-vector space T

L et T be the K-vector space spanned by a baS|s iIndexed by =n-equivalence classes, in the sense that there exists an isomorphism
0 : Iy = basus(‘I). We will use the notation T := §(T) for the basis vector associated to some class T € Ty. We denote by

an(‘J’) C T the sub-vector space of T spanned by basis vectors indexed by primitive tracelets.

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

|racelet algebra structure B. & Kock, 2021]

Definition: Primitive tracelets

Let Ty := T /=, denote the set of =y\-equivalence classes of tracelets. Then Brim(Ty), the set of primitive tracelets, is defined as

Peim(Ty) :={[T]=y|T # To\ ATa, Ig# Tg: T =N TaW Tg}.

Definition: Tracelet K-vector space T

L et T be the K-vector space spanned by a baS|s iIndexed by =n-equivalence classes, in the sense that there exists an isomorphism
0 : Iy = basus(‘I). We will use the notation T := §(T) for the basis vector associated to some class T € Ty. We denote by

an(‘J’) C T the sub-vector space of T spanned by basis vectors indexed by primitive tracelets.

Definition: Tracelet algebra product and unit

Let ® = ®k be the tensor product operation on the K-vector space T Then the multiplication map ¢ and the unitmap n : K — T
are defined via their action on basis vectors of J as follows:

u:?@?%%:?@?’%?o?/, ToT = Z 5([T’ZT']E)
pueEMT(T)

n:K%{]\':ka-?@.

Both definitions are suitably extended by (bi-)linearity to generic (pairs of) elements of T

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet coalgebra, bialgebra and filtration B. & Kock, 2021]

Definition: Tracelet coproduct and counit

Fixing the notational convention W,y T; := T4 for later convenience, let T =y Wi T; be the tracelet normal form for a given tracelet
T € T (where T; € Prim(Ty) foralli € 1if T #£ Tg). Then the tracelet coproduct A and tracelet counit £ are defined via their action

on basis vectors T = §(T) of T as
ATSTRT: T A(T) = T, 0 T
—STRT: T AT) =) 6 ({Sx }) ® (Lg\x y})

ande: T - K: T coeffs (?). Both definitions are extended by linearity to generic elements of T

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet coalgebra, bialgebra and filtration B. & Kock, 2021]

Definition: Tracelet coproduct and counit

Fixing the notational convention W,y T; := T4 for later convenience, let T =y Wi T; be the tracelet normal form for a given tracelet
T € T (where T; € Prim(Ty) foralli € 1if T #£ Tg). Then the tracelet coproduct A and tracelet counit £ are defined via their action

on basis vectors T = §(T) of T as
ATSTRT: T A(T) = T, 0 T
—STRT: T AT) =) 6 ({Sx }) ® (Lg\x y})

ande: T - K: T coeffs (?). Both definitions are extended by linearity to generic elements of T

Theorem:
The data (iAT, u,n, A, e) defines a bialgebra.

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Tracelet coalgebra, bialgebra and filtration B. & Kock, 2021]

Definition: Tracelet coproduct and counit

Fixing the notational convention W,y T; := T4 for later convenience, let T =y Wi T; be the tracelet normal form for a given tracelet
T € T (where T; € Prim(Ty) foralli € 1if T #£ Tg). Then the tracelet coproduct A and tracelet counit £ are defined via their action

on basis vectors T = §(T) of T as

A:‘j“%%@‘f’::?HA(-T_) :225 (LEXTX}) e (L’EE'FJ\XTy})

ande: T - K: T coeffs (?). Both definitions are extended by linearity to generic elements of T

Theorem:

The data (iAT, u,n, A, e) defines a bialgebra.

Theorem:

The tracelet bialgebra (‘3‘, u,n, A, e) is connected and filtered, with connected component T0) = spanK{_T'@}, and with the higher
components of the filtration given by the subspaces

vn>0: T .= spank {/7\'1 .. T,

7. T, ¢ Prim(?)} |
where in a slight abuse of notations ?1 H... W ?n =0(T1W...uT,).

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

ITracelet Hopf algebra structure B. & Kock, 2021]

The tracelet bialgebra (‘?, u,n, A, e) admits the structure of a Hopf algebra, where the antipode S, which is to say the endomorphism

of T that makes the diagram below commute,

TRT Seld — T QT
A AN
A , H
L N A
T € > K B > T
AN e
A u
Y S
TRT 1des — TRT

IS given by S = Id*"". The latter denotes the inverse of the iIdentity morphism Id : T — T under the convolution product x of linear
endomorphisms on J. More concretely, letting e := n o € denote the unit for the convolution product x,

S(T)=Id* (T)=(e—(e— Id)*)+ (e~ ld)y" KT

k>1

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

ITracelet Hopf algebra structure B. & Kock, 2021]

The tracelet bialgebra (‘?, u,n, A, e) admits the structure of a Hopf algebra, where the antipode S, which is to say the endomorphism

of T that makes the diagram below commute,

TRT sold—— TRT
e AN
A . u
L T M,
T € > K B > T
AN A
A u
QN e
TRT ldzs — T T

IS given by S = Id*"". The latter denotes the inverse of the iIdentity morphism Id : T — T under the convolution product x of linear
endomorphisms on J. More concretely, letting e := n o € denote the unit for the convolution product x,

S(T)=Id* (T)=(e—(e— Id)*)+ (e~ ld)y" KT

k>1

Let Lg = (Prim(‘j’), .,.]o) denote the tracelet Lie algebra, with [T, Tl := To T’ — T’ o T (commutator operation w.r.t. ¢). Then the
tracelet Hopf algebra is isomorphic (in the sense of Hopf algebra isomorphisms) to the universal enveloping algebra of L.

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

On Stochastic Rewriting and Combinatorics
via Rule-Algebraic Methods™

Nicolas Behr

Université de Paris, CNRS, IRIF
F-750006, Paris, France

nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described 1n terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

0¢0¢ HdVHOINHA 1L

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTSs) uniformly

The Remy uniform generator (heuristics)

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

U

A
/

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

non-trivial
options

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTs) uniformly

non-trivial
options

1 non-trivial
option

‘counting” after rewriting ‘counting” before rewriting

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTSs) uniformly

0})13:\/5 Z \/a 0P23\</ Z \</a Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTSs) uniformly

0})13:\/5 Z \/a 0P23\</ Z \</a Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |

Op2,[0p2,G)] = [0p, G, -Rp3
Op3,[0p3,G]] = [Op3,G] +2Rpy, [0 ' Op3,Rpy] = —Rp3
(|[Op2,G] = (| (30p1 —20)p3,G) = (| (40p2 —30p3), {|Rpy = (| Op3

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTSs) uniformly

01)13:\/5 Z \/a 0P23\</ Z \</, Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |

Opy,[0p2,G]] = [Op2,G],
:OP37 0P3vé — :OAP37GA:
(|[Op2,G) = (| (30p1 —20

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTSs) uniformly

Opi 3:\/5 Z \/a 0P23\</ Z \</, Ops3 := = Z
T Te{l,LR} | * Te{lLR} | Te{l,LR}
| | % T
N |

AGW w'Qiz SOAE+YOAP1‘|‘UOAP2‘|‘VOAP3

= (|eCe

e o (o (¢ 00 A6
TR % Y<I(| (¢*40r2(6)))) .
S e

p2,[0p2, Gl = [Op2, 6], [Op2,[0p3, 6] = [Op3 G+R —|—€‘u (e\/ — 1)[0/\})3,6] + (ev — 1)(€u — e_v>IéP3/)eQ.QAeAG‘ |>

[0 ,[0p3,G]] = [Op3 G+2R [Op2, Rpy] =0, / A
(1[0r2,G) = (| (30p1 —20p > (1[Op3,G) = <|<4o ~30p > <\RP3,:<\0P3 _ 628+Y<| (QOAE —|—3(e“ — 1)OAP1 + (46H+V 6et ‘I’Z)OAPZ
+(3et 467V —3ettV —1)O0p3)e——eAG)

= (| (25 +3(e — 1) 5+ (4eu+v 6et +2) 7
+(3et +e7V — 3e“+" — 1))e— —eAG\ \}

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Example: generating planar rooted binary trees (PRBTSs) uniformly

OApliz\/E Z \/ 0P21\</ Z \</a Op3 := = Z
| Te{I,L.R} : Te{lLR} | Te{l,L.R}
| * T
|

=X Y(| (G+ (e" —1)[0p2, G
+et eV —1)[0p3, Gl + (¢V — 1) (e — e V)Rpy)e2CerY| |)

= 27 (| (20 +3(eH — 1)Opi + (4eh+Y — 6et +2)Ops
[OAPz,é]*</—I—></+\<L/\§</% Rpy = | _|_(3eﬂ_|_e—V_3elJ+V_1)0P3) -0 7LG||>
=628”<|(2%+3(e“—1)a%+(4eﬂ+v 6et +2) £
)
[ww]%“%“&&%

+(3et +e7V —3eH Y — 1) 8\,)6— 026G ||

{01’2 {01’2 GH—[‘)PZ G] O, [01[’3 01l =]0P3 dl +[RP3 ~ Granted that the derivation of the evolution equation for ¢ (A;®) is somewhat involved, one may
Op3,[0p3,G]| = [Op3,G] +2Rpy, [Op2,Rpy] =0, [Op3,Rpy] = —Rpy
(092,61 = (| (3051 —201), (|[0r3,G] = (| (4052 —30p3), (| Rpz = (| O extract from 1t a very 1nteresting insight via a transformation of variables @; — Inx; (which entails that

ai) — Xigeo 9., and collecting coefficients for the operators #; := x; a‘i l

a (k Inx) = D¥(A;1Inx)

. (58)
D = xpxy (2 — 3y + 2y — Ay) + xgxy Xy (3 — 6Ay + 37y) + xpxyxy (4h, — 3Ay) + x5y

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

lanar rooted binary trees (PRBTs) uniformly

generating p

Example

Op1

A

A

A

€O0r +YOp1 + UOpy +VOp3

A

0

(O}

OOOGOOOOOOOOOOOO
000000000000 00000
000000000000000000
000000000000 0000000
0000000000000 0000000
000000000000 000000000
0000000000000 000000000
000000000000 00000000000
000000000000 000000000000
000000000000 0000000000000
00000000000000000000000000
0000000000000 00000000000000
0000000000000000000000000000

00000000000000000000000000000
000000000000000000000000000000
0000000000000 00000000000000000

000000000000 000000000000000
000000000000 00000000000000000000(
000000000000 0000000000000000000000
000000000000 00000000000000000000000
OOOUOCOOOOOOOOOOOLCOOOOOOOOOOOOOOOOO

-
c
=]
Q
(&)
N
Q

0000000000000000N! Vo o
00000000000000000

OOOOOOOOf

ODOOO

OJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
0000000000000 0000000000000000000000
0000000000000000000000000000000000
000000 000000000000 0000000000000
00000000000000000000000000000000
0000000000000000000000000000000
OOOOOOOOOOOOOOOOOOOOCOOOCOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOO
0000000000000 000000000000
000000000000 000000000000
0000000000000 0000000000
000000000000 0000000000
0000000000000 00000000
OOOOOOOOOOOOODOOOO@O

Junoo €y

)

N (i(i;

N

€0 +Y0p

(ad
e

A

Op

<‘ (ead"ém (eadu

=
/ARP
L=
AR/\
_
=
ﬂAOP
<@
-
(g}
ADMW QL QU
AO QL
+ = Q
5 T
%w nU ~—
S

[
]

A

0P37G

A

G]]
Op2,Rp3y

(I

[

0P3)

A m A
QS Q

e\l e\|
-~ +
MIIJ MIIJ a
o © &
o 33
& P(
S Q=

I
I
]

0P37 G
0P27 G

(I

A

G

[A
[A
0P27

[

[

0P27
[OP37 [

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

lanar rooted binary trees (PRBTs) uniformly

generating p

Example

Op1

A

A

A

€O0r +YOp1 + UOpy +VOp3

A

0

(O}

OOOGOOOOOOOOOOOO
000000000000 00000
000000000000000000
000000000000 0000000
0000000000000 0000000
000000000000 000000000
0000000000000 000000000
000000000000 00000000000
000000000000 000000000000
000000000000 0000000000000
00000000000000000000000000
0000000000000 00000000000000
0000000000000000000000000000

00000000000000000000000000000
000000000000000000000000000000
0000000000000 00000000000000000

000000000000 000000000000000
000000000000 00000000000000000000(
000000000000 0000000000000000000000
000000000000 00000000000000000000000
OOOUOCOOOOOOOOOOOLCOOOOOOOOOOOOOOOOO

-
c
=]
Q
(&)
N
Q

0000000000000000N! Vo o
00000000000000000

OOOOOOOOf

ODOOO

OJOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
0000000000000 0000000000000000000000
0000000000000000000000000000000000
000000 000000000000 0000000000000
00000000000000000000000000000000
0000000000000000000000000000000
OOOOOOOOOOOOOOOOOOOOCOOOCOOOOO

OOOOOOOOOOOOOOOOOOOOOOOOOO
0000000000000 000000000000
000000000000 000000000000
0000000000000 0000000000
000000000000 0000000000
0000000000000 00000000
OOOOOOOOOOOOODOOOO@O

Junoo €y

)

N (i(i;

N

€0 +Y0p

(ad
e

A

Op

<‘ (ead"ém (eadu

=
/ARP
L=
AR/\
_
=
ﬂAOP
<@
-
(g}
ADMW QL QU
AO QL
+ = Q
5 T
%w nU ~—
S

[
]

A

0P37G

A

G]]
Op2,Rp3y

(I

[

0P3)

A m A
QS Q

e\l e\|
-~ +
MIIJ MIIJ a
o © &
o 33
& P(
S Q=

I
I
]

0P37 G
0P27 G

(I

A

G

[A
[A
0P27

[

[

0P27
[OP37 [

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Outlook

+ Development of tracelet theory for analyzing continuous-time Markov chains

- Algorithmic implementations of tracelet generators and analysis methods (—ReSMT)
- Applications of tracelet Hopf algebras to combinatorics”

000774

https://gitlab.com/nicolasbehr/ReSMT

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Outlook

+ Development of tracelet theory for analyzing continuous-time Markov chains

- Algorithmic implementations of tracelet generators and analysis methods (—ReSMT)
- Applications of tracelet Hopf algebras to combinatorics”

- Long-term perspectives:

- Formalization of categorical rewriting theory (CRT)
via proof assistants (Coq!)

- GReTA-ACT working group on CRT starting this fall

= Please contact me for details if you are interested!

- Applications of Grothendiek fibrations and related
concepts to CRT

https://www.1irif.fr/~greta/

* “The “#% in the room”: chemical rewriting theory!

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

Outlook

+ Development of tracelet theory for analyzing continuous-time Markov chains

- Algorithmic implementations of tracelet generators and analysis methods (—ReSMT)
- Applications of tracelet Hopf algebras to combinatorics”

- Long-term perspectives: Thank g OU!

- Formalization of categorical rewriting theory (CRT)
via proof assistants (Coq!)

- GReTA-ACT working group on CRT starting this fall

= Please contact me for details if you are interested!

- Applications of Grothendiek fibrations and related
concepts to CRT

https://www.1irif.fr/~greta/

* “The % in the room”: chemical rewriting theory!

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021

