

Tracelet Hopf algebras and decomposition spaces

Joint work with Joachim Kock (UA Barcelona)
ACT 2021, University of Cambridge, July 15, 2021

Nicolas Behr

Université de Paris, CNRS, IRIF

COMPUTER SCIENCE

- semantics and stochastic rewriting theory
- concurrency theory
- algorithms for bio- and organo-chemistry

Plan of the talk

- 1. Discrete rewriting and diagram Hopf Algebras
- 2. Categorical rewriting theory
- 3. From rewriting to tracelets
- 4. Tracelet decomposition spaces
- 5. Tracelet Hopf algebras

© 2011 International Press Adv. Theor. Math. Phys. **14** (2010) 1209–1243

Combinatorial algebra for second-quantized Quantum Theory

Pawel Blasiak¹, Gerard H.E. Duchamp², Allan I. Solomon^{3,4}, Andrzej Horzela¹ and Karol A. Penson³

The algebras of graph rewriting

Nicolas Behr*¹, Vincent Danos^{†2}, Ilias Garnier^{‡1} and Tobias Heindel^{§3}

¹Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, Scotland, UK ²LFCS, CNRS & Équipe Antique, Département d'Informatique de l'École Normale Supérieure Paris, 45 rue d'Ulm, 75230 Paris Cedex 05, France

³Department of Computer Science, Datalogisk Institut (DIKU), Københavns Universitet, Universitetsparken 5, 2100 København Ø, Denmark

December 20, 2016

Idea: represent transformations of **discrete** (= vertex-only) **graphs** as a certain form of **diagrams**

Elementary "one-step" diagrams:

Create a vertex:

· <u>^</u>

output: a vertex

• **Delete** a vertex:

<u>^</u>

•

input: a vertex

© 2011 International Press Adv. Theor. Math. Phys. **14** (2010) 1209–1243

Combinatorial algebra for second-quantized Quantum Theory

Pawel Blasiak¹, Gerard H.E. Duchamp², Allan I. Solomon^{3,4}, Andrzej Horzela¹ and Karol A. Penson³

The algebras of graph rewriting

Nicolas Behr*¹, Vincent Danos^{†2}, Ilias Garnier^{‡1} and Tobias Heindel^{§3}

¹Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, Scotland, UK ²LFCS, CNRS & Équipe Antique, Département d'Informatique de l'École Normale Supérieure Paris, 45 rue d'Ulm, 75230 Paris Cedex 05, France

³Department of Computer Science, Datalogisk Institut (DIKU), Københavns Universitet, Universitetsparken 5, 2100 København Ø, Denmark

December 20, 2016

Idea: represent transformations of **discrete** (= vertex-only) **graphs** as a certain form of **diagrams**

Elementary "one-step" diagrams:

• Create a vertex:

- v^{\dagger} $\hat{=}$
- output: a vertex

• **Delete** a vertex:

<u>^</u>

input: a vertex

Generic diagrams:

$$d = [(O, I, m)]_{\sim}$$

O — set of output vertices

I- set of **input** vertices

 $m \subseteq O \times I$ — (one-to-one) binary relation

© 2011 International Press Adv. Theor. Math. Phys. **14** (2010) 1209–1243

Combinatorial algebra for second-quantized Quantum Theory

Pawel Blasiak¹, Gerard H.E. Duchamp², Allan I. Solomon^{3,4}, Andrzej Horzela¹ and Karol A. Penson³

The algebras of graph rewriting

Nicolas Behr*¹, Vincent Danos^{†2}, Ilias Garnier^{‡1} and Tobias Heindel^{§3}

¹Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, EH8 9AB, Scotland, UK ²LFCS, CNRS & Équipe Antique, Département d'Informatique de l'École Normale Supérieure Paris, 45 rue d'Ulm, 75230 Paris Cedex 05, France

³Department of Computer Science, Datalogisk Institut (DIKU), Københavns Universitet, Universitetsparken 5, 2100 København Ø, Denmark

December 20, 2016

$$(O,I,m) \sim (O',I',m') \quad :\Leftrightarrow \quad \exists (\omega:O\stackrel{\cong}{\to}O'), (\iota:I\stackrel{\cong}{\to}I'): \ \left((o,i)\in m\Leftrightarrow (\omega(o),\iota(i))\in m'\right)$$

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a **vector space** $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the **basis vector** labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a vector space $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the basis vector labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

Diagrammatic composition:

$$\delta(d_2) *_{\mathcal{D}} \delta(d_1) := \sum_{\substack{m_{21} \in \mathcal{M}_{d_2}(d_1)}} \delta\left(d_2 \triangleleft_{m_{21}} d_1\right) , \qquad d_2 \triangleleft_{m_{21}} d_1 := \left[(O_2 + O_1, I_2 + I_1, m_2 + m_{21} + m_1]_{\sim}\right]$$

matchings (i.e. one-to-one mappings) of outputs of d_2 into inputs of d_1

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a vector space $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the basis vector labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

Diagrammatic composition:

$$\delta(d_2) *_{\mathcal{D}} \delta(d_1) := \sum_{m_{21} \in \mathcal{M}_{d_2}(d_1)} \delta\left(d_2 \triangleleft_{m_{21}} d_1\right), \qquad d_2 \triangleleft_{m_{21}} d_1 := [(O_2 + O_1, I_2 + I_1, m_2 + m_{21} + m_1]_{\sim}$$

matchings (i.e. one-to-one mappings) of outputs of d_2 into inputs of d_1

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a vector space $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the basis vector labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

Diagrammatic composition:

$$\delta(d_2) *_{\mathcal{D}} \delta(d_1) := \sum_{m_{21} \in \mathcal{M}_{d_2}(d_1)} \delta\left(d_2 \triangleleft_{m_{21}} d_1\right), \qquad d_2 \triangleleft_{m_{21}} d_1 := \left[(O_2 + O_1, I_2 + I_1, m_2 + m_{21} + m_1)\right]_{\sim}$$

matchings (i.e. one-to-one mappings) of outputs of d_2 into inputs of d_1

$$d_2 \triangleleft_{m_{21}} d_1 =$$

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a vector space $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the basis vector labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

Diagrammatic composition:

$$\delta(d_2) *_{\mathcal{D}} \delta(d_1) := \sum_{m_{21} \in \mathcal{M}_{d_2}(d_1)} \delta\left(d_2 \triangleleft_{m_{21}} d_1\right), \qquad d_2 \triangleleft_{m_{21}} d_1 := [(O_2 + O_1, I_2 + I_1, m_2 + m_{21} + m_1]_{\sim}$$

matchings (i.e. one-to-one mappings) of outputs of d_2 into inputs of d_1

Theorem

 $(\mathcal{D}, *_{\mathcal{D}})$ is an associative unital algebra, with unit element $d_{\mathcal{O}} := \delta([(\mathcal{O}, \mathcal{O}, \mathcal{O})]_{\sim})$

$$d_2 \triangleleft_{m_{21}} d_1 =$$

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a **vector space** $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the **basis vector** labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a vector space $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the basis vector labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

$$v^{\dagger} := \left[\left(\left\{ \bullet \right\}, \emptyset, \emptyset \right) \right]_{\sim} \quad \hat{=} \quad \dot{\underline{}}$$

Elementary diagrams:

$$v := [(\emptyset, \{ \bullet \}, \emptyset)]_{\sim} \hat{} = \overline{\vdots}$$

$$e := \left[\left(\left\{ \bullet \right\}, \left\{ \left(\bullet , \bullet \right) \right\} \right) \right]_{\sim} \quad \hat{=} \quad$$

Notation: let D denote the set of equivalence classes $d = [(O, I, m)]_{\sim}$ of diagrams

Idea: define a vector space $\mathscr{D} \equiv (\mathscr{D}, +, \cdot) := \operatorname{span}_{\mathbb{K}}(D)$ (with $\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$), and denote the basis vector labelled by $d \in D$ with $\delta(d) \in \mathscr{D}$

$$v^{\dagger} := [(\{ \bullet \}, \emptyset, \emptyset)]_{\sim} \hat{}$$

Elementary diagrams:

$$v := [(\emptyset, \{ \bullet \}, \emptyset)]_{\sim} \hat{}$$

$$v := [(\emptyset, \{ \bullet \}, \emptyset)]_{\sim} \hat{}$$

$$e := [(\{\, \bullet \,\}, \{\, \bullet \,\}, \{(\, \bullet \,, \bullet \,)\})]_{\sim} \quad \hat{=} \quad$$

Notation: disjoint union on diagrams $d_2 \uplus d_1 := [(O_2 + O_1, I_2 + I_1, m_2 + m_1)]_{\sim} = d_2 \triangleleft_{\varnothing} d_1$

 \Rightarrow every equivalence class d may be completely characterized by its "connected components", in the sense that

$$\forall d \in D: \exists k, \ell, m \in \mathbb{Z}_{\geq 0}: d = d_{k,\ell,m}, \quad d_{k,\ell,m} := v^{\dagger \uplus k} \uplus v^{\uplus \ell} \uplus e^{\uplus m}$$

$$v^{\dagger} := [(\{ \bullet \}, \emptyset, \emptyset)]_{\sim} \hat{=} \underline{\vdots}$$

Elementary diagrams:

$$v := v^{\dagger} := [(\emptyset, \{ \bullet \}, \emptyset)]_{\sim} \hat{} = \overline{\vdots}$$

$$e := [(\{ \bullet \}, \{ \bullet \}, \{ (\bullet , \bullet) \})]_{\sim} \hat{}$$

Heisenberg-Lie algebra

$$\mathscr{L}_{\mathscr{D}}:=(\{\delta(v),\delta(v^{\dagger}),\delta(e)\},[.,.])$$
 (with $[A,B]:=A*_{\mathscr{D}}B-B*_{\mathscr{D}}A$), with the only non-zero commutator given by $[\delta(v),\delta(v^{\dagger})]=\delta(e)$.

$$v^{\dagger} := [(\{ \bullet \}, \emptyset, \emptyset)]_{\sim} \hat{} = \underline{}$$

Elementary diagrams:

$$v := v^{\dagger} := [(\emptyset, \{ \bullet \}, \emptyset)]_{\sim} \hat{}$$

$$e := [(\{\, \bullet \,\}, \{\, \bullet \,\}, \{(\, \bullet \,, \bullet \,)\})]_{\sim} \quad \hat{=} \quad$$

Heisenberg-Lie algebra

 $\mathscr{L}_{\mathscr{D}}:=(\{\delta(v),\delta(v^{\dagger}),\delta(e)\},[\,.\,,.\,]) \text{ (with } [A,B]:=A*_{\mathscr{D}}B-B*_{\mathscr{D}}A)\text{, with the only non-zero commutator given by } [\delta(v),\delta(v^{\dagger})]=\delta(e).$

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,

$$\mathcal{U}(\mathcal{L}_{\mathcal{D}}) := \frac{T(\mathcal{L}_{\mathcal{D}})}{\langle \delta(v) \otimes \delta(v^{\dagger}) - \delta(v^{\dagger}) \otimes \delta(v) - \delta(e) \rangle}$$

has a **normal-ordered basis** with elements of the form $U_{k,l,m} := \delta(v^{\dagger})^{\otimes k} \otimes \delta(v)^{\otimes \ell} \otimes \delta(e)^{\otimes m}$ $(k,l,m \in \mathbb{Z}_{\geq 0})$

$$v^{\dagger} := [(\{ \bullet \}, \emptyset, \emptyset)]_{\sim} \hat{} = \underline{}$$

Elementary diagrams:

$$v := v^{\dagger} := [(\emptyset, \{ \bullet \}, \emptyset)]_{\sim} \hat{} = \overline{\vdots}$$

$$e := \left[\left(\left\{ \bullet \right\}, \left\{ \left(\bullet , \bullet \right) \right\} \right) \right]_{\sim} \quad \hat{=} \quad$$

Heisenberg-Lie algebra

 $\mathscr{L}_{\mathscr{D}}:=(\{\delta(v),\delta(v^{\dagger}),\delta(e)\},[\,.\,,.\,]) \text{ (with } [A,B]:=A *_{\mathscr{D}}B-B *_{\mathscr{D}}A)\text{, with the only non-zero commutator given by } [\delta(v),\delta(v^{\dagger})]=\delta(e).$

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,

$$\mathcal{U}(\mathcal{L}_{\mathcal{D}}) := \frac{T(\mathcal{L}_{\mathcal{D}})}{\left\langle \delta(v) \otimes \delta(v^{\dagger}) - \delta(v^{\dagger}) \otimes \delta(v) - \delta(e) \right\rangle}$$

has a **normal-ordered basis** with elements of the form $U_{k,l,m} := \delta(v^{\dagger})^{\otimes k} \otimes \delta(v)^{\otimes \ell} \otimes \delta(e)^{\otimes m}$ $(k,l,m \in \mathbb{Z}_{\geq 0})$

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,

$$\mathcal{U}(\mathcal{L}_{\mathcal{D}}) := \frac{T(\mathcal{L}_{\mathcal{D}})}{\langle \delta(v) \otimes \delta(v^{\dagger}) - \delta(v^{\dagger}) \otimes \delta(v) - \delta(e) \rangle}$$

has a **normal-ordered basis** with elements of the form $U_{k,l,m} := \delta(v^{\dagger})^{\otimes k} \otimes \delta(v)^{\otimes \ell} \otimes \delta(e)^{\otimes m}$ $(k,l,m \in \mathbb{Z}_{\geq 0})$

Notations:

- disjoint union on diagrams $d_2 \uplus d_1 := [(O_2 + O_1, I_2 + I_1, m_2 + m_1)]_{\sim} = d_2 \triangleleft_{\varnothing} d_1$
- $d_{k,\ell,m} := v^{\dagger \uplus k} \uplus v^{\uplus \ell} \uplus e^{\uplus m}$

Theorem [Behr et al. 2016]

There exists a **isomorphism of algebras** $(\mathcal{D}, *_{\mathcal{D}}) \xrightarrow{\varphi} \mathcal{U}(\mathcal{L}_{\mathcal{D}})$, defined via $\varphi(\delta(d_{k,\ell,m})) = U_{k,\ell,m}$.

Interesting fact: the universal enveloping algebra $\mathscr{U}(\mathscr{L}_{\mathscr{D}})$ is a (non-commutative, co-commutative) Hopf algebra.

 \Rightarrow one may verify that the isomorphism φ extends to a **Hopf-algebra isomorphism**!

Coproduct of the diagram algebra

$$\delta(d) = \delta(\biguplus_{x \in X} d_x) \qquad (d_x \in \{v^{\dagger}, v, e\})$$

$$\delta(\biguplus_{x} d_x) := \delta(d_{\varnothing})$$

$$\Delta(\delta(d)) := \sum_{Y \subseteq X} \delta(\biguplus d_y) \otimes \delta(\biguplus d_z)$$

$$z \in X \setminus Y$$

Theorem [Blasiak et al. 2011, Behr et al. 2016]

 $(\mathscr{D}, *_{\mathscr{D}}, \Delta)$ is a **Hopf algebra**, with unit $\eta: \mathbb{K} \to \mathscr{D}: 1_{\mathbb{K}} \mapsto \delta(d_{\varnothing})$ and counit $\epsilon: \mathscr{D} \to \mathbb{K}: \delta(d) \mapsto \delta_{d,d_{\varnothing}}$

Elementary diagrams:

$$d_{k,\ell,m} := v^{\dagger \ \uplus \ k} \ \uplus \ v^{\ \uplus \ \ell} \ \uplus \ e^{\ \uplus \ m}$$

$$v^{\dagger} \stackrel{\triangle}{=} \stackrel{\vdots}{=} e \stackrel{\triangle}{=} v \stackrel{\triangle}{=} v$$

Elementary diagrams:

$$d_{k,\ell,m} := v^{\dagger \uplus k} \uplus v^{\uplus \ell} \uplus e^{\uplus m}$$

$$v^{\dagger}$$
 $\hat{=}$ \vdots e $\hat{=}$ v $\hat{=}$ \vdots

Example diagrammatic normal-ordering formula

$$\delta(d_{k_{2},\ell_{2},m_{2}}) *_{\mathscr{D}} \delta(d_{k_{1},\ell_{1},m_{1}}) = \sum_{r>0} {\binom{\ell_{2}}{r}} r! {\binom{k_{1}}{r}} \delta(d_{k_{1}+k_{2}-r,\ell_{1}+\ell_{2}-r,m_{1}+m_{2}+r})$$

of ways to form

r output-to-input "wirings

(disregarding the order)

COMPUTER SCIENCE

- semantics and stochastic rewriting theory
- concurrency theory
- algorithms for bio- and organo-chemistry

Plan of the talk

- 1. Discrete rewriting and diagram Hopf Algebras
- 2. Categorical rewriting theory
- 3. From rewriting to tracelets
- 4. Tracelet decomposition spaces
- 5. Tracelet Hopf algebras

Double Pushout (DPO) rewriting

Double Pushout (DPO) rewriting

Double Pushout (DPO) rewriting

Organic chemistry via DPO-type rewriting (!)

$$\begin{array}{c} C \\ N \\ C \end{array}$$

Source: Algorithmic Cheminformatics Group, SDU Odense

Organic chemistry via DPO-type rewriting (!)

Source: Algorithmic Cheminformatics Group, SDU Odense

Organic chemistry via DPO-type rewriting (!)

$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\$$

Source: Algorithmic Cheminformatics Group, SDU Odense

New seminar series since **November 2020**,

co-hosted by Nicolas Behr, Jean Krivine and Reiko Heckel

https://www.irif.fr/~greta/

DPO rewriting theory does not really stop at this first definition...

DPO rewriting theory does not really stop at this first definition...

Artwork by Angelika Villagrana

DPO rewriting theory does not really stop at this first definition...

Artwork by Angelika Villagrana

Plan of the talk

- 1. Discrete rewriting and diagram Hopf Algebras
- 2. Categorical rewriting theory
- 3. From rewriting to tracelets
- 4. Tracelet decomposition spaces
- 5. Tracelet Hopf algebras

From the DPO-type concurrency theorem to tracelets

From the DPO-type concurrency theorem to tracelets

From the DPO-type concurrency theorem to tracelets

$$O_{21}$$
 r_{21} I_{21}

$$O_{10} \stackrel{r_{10}}{---} I_{10}$$

Plan of the talk

- 1. Discrete rewriting and diagram Hopf Algebras
- 2. Categorical rewriting theory
- 3. From rewriting to tracelets
- 4. Tracelet decomposition spaces
- 5. Tracelet Hopf algebras

Motivation: key property of compositional rewriting theory

Tracelet Hopf algebras and decomposition spaces

Nicolas Behr

Univ. de Paris, CNRS, IRIF, F-75006, Paris, France nicolas.behr@irif.fr

Joachim Kock

Universitat Autònoma de Barcelona & Centre de Recerca Matemàtica kock@mat.uab.cat

$$\{*\} \xleftarrow{-d_1 - s_0} \mathbf{X}_1 \xleftarrow{-d_2 - s_1} \mathbf{X}_2 \xleftarrow{-d_3 - s_2} \mathbf{X}_3$$

$$\leftarrow d_1 - s_0 -$$

First hint: at length 3, the top and bottom diagrams in the equivalence suggest four "forgetful" mappings, which are the candidates for the

face maps d_0, \ldots, d_3

$$\{*\} \xleftarrow{-d_1 - s_0} \mathbf{X}_1 \xleftarrow{-d_2 - s_1} \mathbf{X}_2 \xleftarrow{-d_3 - s_2} \mathbf{X}_3$$

$$\{*\} \xleftarrow{-d_1 - s_0} \mathbf{X}_1 \xleftarrow{-d_2 - s_1} \mathbf{X}_2 \xleftarrow{-d_2 - s_2} \mathbf{X}_3 \cdots$$

Construction of a suitable decomposition space

Construction of a suitable decomposition space

Construction of a suitable decomposition space

$$\{*\} \xleftarrow{-d_1 - s_0} \mathbf{X}_1 \xleftarrow{-d_2 - s_1} \mathbf{X}_2 \xleftarrow{-d_2 - s_2} \mathbf{X}_3 \cdots$$

Theorem

 X_{\bullet} is a decomposition space. This means that for all 0 < i < n the two squares

$$\mathbf{X}_{n+1} \xrightarrow{d_{n+1}} \mathbf{X}_{n}$$
 $\mathbf{X}_{n+1} \xrightarrow{d_{0}} \mathbf{X}_{n}$
 $d_{i} \downarrow \qquad \qquad \downarrow d_{i}$
 $\mathbf{X}_{n} \xrightarrow{d_{0}} \mathbf{X}_{n-1}$
 $\mathbf{X}_{n} \xrightarrow{d_{0}} \mathbf{X}_{n-1}$

are (homotopy) pullbacks.

Plan of the talk

- 1. Discrete rewriting and diagram Hopf Algebras
- 2. Categorical rewriting theory
- 3. From rewriting to tracelets
- 4. Tracelet decomposition spaces
- 5. Tracelet Hopf algebras

Normal form equivalence [B. 2019]

$$\equiv_N := rst (\equiv_A \cup \equiv_S \cup \equiv_T)$$

- $\cdot \equiv_A$ abstraction equivalence (= point-wise isos)
- $=_S$ shift equivalence (= "sequential commutativity")
- \equiv_T equivalence up to trivial tracelets, i.e., for any tracelet T, we define $T \equiv_T T^{\mu \varnothing} \angle T_{\varnothing} \equiv_T T_{\varnothing}^{\mu \varnothing} \angle T$

Normal form equivalence [B. 2019]

$$\equiv_N := rst (\equiv_A \cup \equiv_S \cup \equiv_T)$$

- $\cdot \equiv_A$ abstraction equivalence (= point-wise isos)
- \equiv_S shift equivalence (= "sequential commutativity")
- \equiv_T equivalence up to trivial tracelets, i.e., for any tracelet T, we define $T\equiv_T T^{\mu\emptyset}\angle T_{\emptyset}\equiv_T T_{\emptyset}^{\mu\emptyset}\angle T$

Normal form equivalence [B. 2019]

$$\equiv_N := rst (\equiv_A \cup \equiv_S \cup \equiv_T)$$

- $\bullet \equiv_A$ abstraction equivalence (= point-wise isos)
- \equiv_S shift equivalence (= "sequential commutativity")
- $\equiv_T \text{ equivalence up to trivial tracelets, i.e., for any}$ tracelet T, we define $T \equiv_T T^{\mu \emptyset} \angle T_{\emptyset} \equiv_T T_{\emptyset}^{\mu \emptyset} \angle T$

$$T_A \uplus T_B := [T_A{}^{\mu \emptyset} \angle T_B]_{\equiv_N} = [T_B{}^{\mu \emptyset} \angle T_A]_{\equiv_N}$$

Definition: Primitive tracelets

Let $\mathfrak{T}_N := \mathfrak{T}/_{\equiv_N}$ denote the set of \equiv_N -equivalence classes of tracelets. Then $\mathfrak{Prim}(\mathfrak{T}_N)$, the set of primitive tracelets, is defined as

$$\mathfrak{Prim}(\mathfrak{T}_N) := \{ [T]_{\equiv_N} | T \neq T_\varnothing \land \not\exists T_A, T_B \neq T_\varnothing : T \equiv_N T_A \uplus T_B \}.$$

Tracelet algebra structure

Definition: Primitive tracelets

Let $\mathfrak{T}_N := \mathfrak{T}/_{\equiv_N}$ denote the set of \equiv_N -equivalence classes of tracelets. Then $\mathfrak{Prim}(\mathfrak{T}_N)$, the set of primitive tracelets, is defined as

$$\mathfrak{Prim}(\mathfrak{T}_{N}):=\{[T]_{\equiv_{N}}|T\neq T_{\varnothing}\wedge\not\exists T_{A},T_{B}\neq T_{\varnothing}:T\equiv_{N}T_{A}\uplus T_{B}\}.$$

Definition: Tracelet $\mathbb K\text{-vector space }\widehat{\mathfrak T}$

Let $\widehat{\mathfrak{T}}$ be the \mathbb{K} -vector space spanned by a basis indexed by $\equiv_{\mathbb{N}}$ -equivalence classes, in the sense that there exists an isomorphism $\delta:\mathfrak{T}_{\mathbb{N}}\stackrel{\sim}{\to}\mathsf{basis}(\widehat{\mathfrak{T}})$. We will use the notation $\widehat{\mathsf{T}}:=\delta(\mathsf{T})$ for the basis vector associated to some class $\mathsf{T}\in\mathfrak{T}_{\mathbb{N}}$. We denote by $\mathsf{Prim}(\widehat{\mathfrak{T}})\subset\widehat{\mathfrak{T}}$ the sub-vector space of $\widehat{\mathfrak{T}}$ spanned by basis vectors indexed by primitive tracelets.

Tracelet algebra structure

Definition: Primitive tracelets

Let $\mathfrak{T}_N := \mathfrak{T}/_{\equiv_N}$ denote the set of \equiv_N -equivalence classes of tracelets. Then $\mathfrak{Prim}(\mathfrak{T}_N)$, the set of primitive tracelets, is defined as

$$\mathfrak{Prim}(\mathfrak{T}_{N}):=\{[T]_{\equiv_{N}}|T\neq T_{\varnothing}\wedge\not\exists T_{A},T_{B}\neq T_{\varnothing}:T\equiv_{N}T_{A}\uplus T_{B}\}.$$

Definition: Tracelet $\mathbb K$ -vector space $\widehat{\mathfrak T}$

Let $\widehat{\mathfrak{T}}$ be the \mathbb{K} -vector space spanned by a basis indexed by $\equiv_{\mathbb{N}}$ -equivalence classes, in the sense that there exists an isomorphism $\delta:\mathfrak{T}_{\mathbb{N}}\stackrel{\sim}{\to}\mathsf{basis}(\widehat{\mathfrak{T}})$. We will use the notation $\widehat{\mathsf{T}}:=\delta(\mathsf{T})$ for the basis vector associated to some class $\mathsf{T}\in\mathfrak{T}_{\mathbb{N}}$. We denote by $\mathsf{Prim}(\widehat{\mathfrak{T}})\subset\widehat{\mathfrak{T}}$ the sub-vector space of $\widehat{\mathfrak{T}}$ spanned by basis vectors indexed by primitive tracelets.

Definition: Tracelet algebra product and unit

Let $\otimes \equiv \otimes_{\mathbb{K}}$ be the tensor product operation on the \mathbb{K} -vector space $\widehat{\mathfrak{T}}$. Then the **multiplication map** μ and the **unit map** $\eta : \mathbb{K} \to \widehat{\mathfrak{T}}$ are defined via their action on basis vectors of $\widehat{\mathfrak{T}}$ as follows:

$$\begin{split} \mu: \widehat{\mathfrak{T}} \otimes \widehat{\mathfrak{T}} \to \widehat{\mathfrak{T}}: \widehat{\mathsf{T}} \otimes \widehat{\mathsf{T}}' \mapsto \widehat{\mathsf{T}} \diamond \widehat{\mathsf{T}}' \,, \qquad \widehat{\mathsf{T}} \diamond \widehat{\mathsf{T}}' := \sum_{\mu \in \mathsf{MT}_{\mathsf{T}}(\mathsf{T}')} \delta \left([\mathsf{T} \not \succeq \mathsf{T}']_{\equiv_{\mathsf{N}}} \right) \\ \eta: \mathbb{K} \to \widehat{\mathfrak{T}}: \mathsf{k} \mapsto \mathsf{k} \cdot \widehat{\mathsf{T}}_{\varnothing} \,. \end{split}$$

Both definitions are suitably extended by (bi-)linearity to generic (pairs of) elements of $\widehat{\mathfrak{T}}$.

Definition: Tracelet coproduct and counit

Fixing the **notational convention** $\uplus_{i \in \emptyset} T_i := T_{\varnothing}$ for later convenience, let $T \equiv_N \uplus_{i \in I} T_i$ be the tracelet normal form for a given tracelet $T \in \mathcal{T}$ (where $T_i \in \mathfrak{Prim}(\mathcal{T}_N)$ for all $i \in I$ if $T \neq T_{\varnothing}$). Then the **tracelet coproduct** Δ and **tracelet counit** ε are defined via their action on basis vectors $\widehat{T} = \delta(T)$ of $\widehat{\mathcal{T}}$ as

$$\Delta: \widehat{\mathfrak{T}} \to \widehat{\mathfrak{T}} \otimes \widehat{\mathfrak{T}}: \widehat{\mathsf{T}} \mapsto \Delta(\widehat{\mathsf{T}}) := \sum_{\mathsf{X} \subset \mathsf{I}} \delta \left(\left[\underset{\mathsf{x} \in \mathsf{X}}{\uplus} \, \mathsf{T}_\mathsf{x} \right]_{\equiv_{\mathsf{N}}} \right) \otimes \delta \left(\left[\underset{\mathsf{y} \in \mathsf{I} \setminus \mathsf{X}}{\uplus} \, \mathsf{T}_\mathsf{y} \right]_{\equiv_{\mathsf{N}}} \right)$$

and $\varepsilon: \widehat{\mathfrak{T}} \to \mathbb{K}: \widehat{\mathsf{T}} \mapsto \mathsf{coeff}_{\widehat{\mathsf{T}}_{\varnothing}}(\widehat{\mathsf{T}})$. Both definitions are extended by linearity to generic elements of $\widehat{\mathfrak{T}}$.

Definition: Tracelet coproduct and counit

Fixing the **notational convention** $\uplus_{i \in \emptyset} T_i := T_{\varnothing}$ for later convenience, let $T \equiv_N \uplus_{i \in I} T_i$ be the tracelet normal form for a given tracelet $T \in \mathcal{T}$ (where $T_i \in \mathfrak{Prim}(\mathcal{T}_N)$ for all $i \in I$ if $T \neq T_{\varnothing}$). Then the **tracelet coproduct** Δ and **tracelet counit** ε are defined via their action on basis vectors $\widehat{T} = \delta(T)$ of $\widehat{\mathcal{T}}$ as

$$\Delta: \widehat{\mathfrak{T}} \to \widehat{\mathfrak{T}} \otimes \widehat{\mathfrak{T}}: \widehat{\mathsf{T}} \mapsto \Delta(\widehat{\mathsf{T}}) := \sum_{\mathsf{X} \subset \mathsf{I}} \delta \left(\left[\underset{\mathsf{x} \in \mathsf{X}}{\uplus} \, \mathsf{T}_{\mathsf{x}} \right]_{\equiv_{\mathsf{N}}} \right) \otimes \delta \left(\left[\underset{\mathsf{y} \in \mathsf{I} \setminus \mathsf{X}}{\uplus} \, \mathsf{T}_{\mathsf{y}} \right]_{\equiv_{\mathsf{N}}} \right)$$

and $\varepsilon: \widehat{\mathfrak{T}} \to \mathbb{K}: \widehat{\mathsf{T}} \mapsto \mathsf{coeff}_{\widehat{\mathsf{T}}_{\varnothing}}(\widehat{\mathsf{T}})$. Both definitions are extended by linearity to generic elements of $\widehat{\mathfrak{T}}$.

Theorem:

The data $(\widehat{\mathfrak{I}}, \mu, \eta, \Delta, \varepsilon)$ defines a bialgebra.

Definition: Tracelet coproduct and counit

Fixing the **notational convention** $\uplus_{i \in \emptyset} T_i := T_{\varnothing}$ for later convenience, let $T \equiv_N \uplus_{i \in I} T_i$ be the tracelet normal form for a given tracelet $T \in \mathfrak{T}$ (where $T_i \in \mathfrak{Prim}(\mathfrak{T}_N)$ for all $i \in I$ if $T \neq T_{\varnothing}$). Then the **tracelet coproduct** Δ and **tracelet counit** ε are defined via their action on basis vectors $\widehat{T} = \delta(T)$ of $\widehat{\mathfrak{T}}$ as

$$\Delta: \widehat{\mathfrak{T}} \to \widehat{\mathfrak{T}} \otimes \widehat{\mathfrak{T}}: \widehat{\mathsf{T}} \mapsto \Delta(\widehat{\mathsf{T}}) := \sum_{\mathsf{X} \subset \mathsf{I}} \delta \left(\left[\underset{\mathsf{X} \in \mathsf{X}}{\uplus} \mathsf{T}_{\mathsf{X}} \right]_{\equiv_{\mathsf{N}}} \right) \otimes \delta \left(\left[\underset{\mathsf{y} \in \mathsf{I} \setminus \mathsf{X}}{\uplus} \mathsf{T}_{\mathsf{y}} \right]_{\equiv_{\mathsf{N}}} \right)$$

and $\varepsilon: \widehat{\mathfrak{T}} \to \mathbb{K}: \widehat{\mathsf{T}} \mapsto \mathsf{coeff}_{\widehat{\mathsf{T}}_{\varnothing}}(\widehat{\mathsf{T}})$. Both definitions are extended by linearity to generic elements of $\widehat{\mathfrak{T}}$.

Theorem:

The data $(\widehat{\mathfrak{I}}, \mu, \eta, \Delta, \varepsilon)$ defines a bialgebra.

Theorem:

The tracelet bialgebra $(\widehat{\mathfrak{T}}, \mu, \eta, \Delta, \varepsilon)$ is **connected and filtered**, with **connected component** $\widehat{\mathfrak{T}}^{(0)} := \operatorname{span}_{\mathbb{K}} \{\widehat{\mathsf{T}}_{\varnothing}\}$, and with the higher components of the **filtration** given by the subspaces

$$\forall n > 0: \quad \widehat{\mathfrak{T}}^{(n)} := span_{\mathbb{K}} \left\{ \widehat{T}_1 \uplus ... \uplus \widehat{T}_n \middle| \widehat{T}_1, ..., \widehat{T}_n \in Prim(\widehat{\mathfrak{T}}) \right\},$$

where in a slight abuse of notations $\widehat{T}_1 \uplus ... \uplus \widehat{T}_n := \delta(T_1 \uplus ... \uplus T_n)$.

Tracelet Hopf algebra structure

Theorem

The tracelet bialgebra $(\widehat{\mathfrak{T}}, \mu, \eta, \Delta, \varepsilon)$ admits the structure of a **Hopf algebra**, where the **antipode** S, which is to say the endomorphism of $\widehat{\mathfrak{T}}$ that makes the diagram below commute,

is given by $S := Id^{\star^{-1}}$. The latter denotes the inverse of the identity morphism $Id : \widehat{\mathfrak{T}} \to \widehat{\mathfrak{T}}$ under the *convolution product* \star of linear endomorphisms on $\widehat{\mathfrak{T}}$. More concretely, letting $e := \eta \circ \varepsilon$ denote the unit for the convolution product \star ,

$$S(\widehat{T}) = Id^{\star^{-1}}(\widehat{T}) = (e - (e - Id))^{\star^{-1}} = e(\widehat{T}) + \sum_{k \geq 1} (e - Id)^{\star k}(\widehat{T}).$$

Tracelet Hopf algebra structure

Theorem

The tracelet bialgebra $(\widehat{\mathfrak{T}}, \mu, \eta, \Delta, \varepsilon)$ admits the structure of a **Hopf algebra**, where the **antipode** S, which is to say the endomorphism of $\widehat{\mathfrak{T}}$ that makes the diagram below commute,

is given by $S := Id^{\star^{-1}}$. The latter denotes the inverse of the identity morphism $Id : \widehat{\mathfrak{T}} \to \widehat{\mathfrak{T}}$ under the *convolution product* \star of linear endomorphisms on $\widehat{\mathfrak{T}}$. More concretely, letting $e := \eta \circ \varepsilon$ denote the unit for the convolution product \star ,

$$S(\widehat{T}) = Id^{\star^{-1}}(\widehat{T}) = (e - (e - Id))^{\star^{-1}} = e(\widehat{T}) + \sum_{k \ge 1} (e - Id)^{\star k}(\widehat{T}).$$

Theorem

Let $\mathcal{L}_{\mathfrak{T}} := (\text{Prim}(\widehat{\mathfrak{T}}), [.,.]_{\diamond})$ denote the *tracelet Lie algebra*, with $[\widehat{\mathsf{T}}, \widehat{\mathsf{T}}']_{\diamond} := \widehat{\mathsf{T}} \diamond \widehat{\mathsf{T}}' - \widehat{\mathsf{T}}' \diamond \widehat{\mathsf{T}}$ (commutator operation w.r.t. \diamond). Then the tracelet Hopf algebra is isomorphic (in the sense of Hopf algebra isomorphisms) to the universal enveloping algebra of $\mathcal{L}_{\mathfrak{T}}$.

On Stochastic Rewriting and Combinatorics via Rule-Algebraic Methods*

Nicolas Behr

Université de Paris, CNRS, IRIF F-75006, Paris, France nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the relationship of stochastic rewriting systems described in terms of continuous-time Markov chains, their embedded discrete-time Markov chains and certain types of generating function expressions in combinatorics. We introduce a number of generating function techniques that permit a novel form of static analysis for rewriting systems based upon marginalizing distributions over the states of the rewriting systems via pattern-counting observables.

"counting" after rewriting

"counting" after rewriting

3 non-trivial options

"counting" after rewriting

3 non-trivial options

1 non-trivial option

"counting" after rewriting

$$\hat{O}_{P1} := igwedge_{ extstyle T} \equiv \sum_{T \in \{I,L,R\}} igwedge_{T}^{T},$$

$$\hat{O}_{P2} := igwedge_{st} \equiv \sum_{T \in \{I,L,R\}} igwedge_{T},$$

$$\hat{O}_{P1} := \bigvee_{I} \equiv \sum_{T \in \{I, I, R\}} \bigvee_{I}, \qquad \hat{O}_{P2} := \bigvee_{T \in \{I, I, R\}} \bigvee_{I}, \qquad \hat{O}_{P3} := \bigvee_{T \in \{I, I, R\}} \bigvee_{I}, \qquad \hat{R}_{P3'} := \bigvee_{I} \hat{R}_{P3'} := \bigvee_$$

 $\langle |[\hat{O}_{P2},\hat{G}] = \langle |(3\hat{O}_{P1} - 2\hat{O}_{P2}), \quad \langle |[\hat{O}_{P3},\hat{G}] = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3}| \rangle \rangle$

$$\hat{O}_{P1} := igvee_{T \in \{I,L,R\}} igvee_{T}, \qquad \qquad \hat{O}_{P2} := igvee_{T \in \{I,L,R\}} igvee_{T}, \qquad \qquad \hat{O}_{P3} := igvee_{T \in \{I,L,R\}} igvee_{T},$$

$$\hat{O}_{P1} := igwedge_{*} \equiv \sum_{T \in \{I,L,R\}} igwedge_{T},$$

$$[\hat{O}_{P3}, \hat{G}] = \bigvee_{l} + \bigvee_{l} + \bigvee_{l} + \bigvee_{l} - \bigvee_{l} - \bigwedge_{l} -$$

$$\hat{O}_{P2} := igwedge_{*} \equiv \sum_{T \in \{I,L,R\}} igwedge_{T},$$

$$\hat{O}_{P3} := \bigvee_{*} \equiv \sum_{T \in \{I,L,R\}} \bigvee_{T}$$

$$\begin{split} \mathscr{G}(\lambda;\underline{\omega}) &:= \langle |e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle\,,\quad \underline{\omega}\cdot\hat{\underline{O}} := \varepsilon\hat{O}_E + \gamma\hat{O}_{P1} + \mu\hat{O}_{P2} + \nu\hat{O}_{P3} \\ &\frac{\partial}{\partial\lambda}\mathscr{G}(\lambda;\underline{\omega}) = \langle |\left(e^{ad_{\underline{\omega}\cdot\hat{\underline{O}}}}(\hat{G})\right)e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \stackrel{(*)}{=} \langle |\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}(\hat{G})\right)\right)\right)\right)\right) e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{\nu\hat{O}_{P3}}}\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right)\right)e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right) + e^{\mu}(e^{\nu}-1)[\hat{O}_{P3},\hat{G}] + (e^{\nu}-1)(e^{\mu}-e^{-\nu})\hat{R}_{P3'})e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(2\hat{O}_E+3(e^{\mu}-1)\hat{O}_{P1}+(4e^{\mu+\nu}-6e^{\mu}+2)\hat{O}_{P2}\right) + (3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\hat{O}_{P3})e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(2\frac{\partial}{\partial\varepsilon}+3(e^{\mu}-1)\frac{\partial}{\partial\gamma}+(4e^{\mu+\nu}-6e^{\mu}+2)\frac{\partial}{\partial\mu}\right) + (3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\frac{\partial}{\partial\gamma}e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \end{split}$$

$$\hat{O}_{P1} := igwedge_{^*} \equiv \sum_{T \in \{I,L,R\}} igwedge_{^T},$$

$$\begin{split} &[\hat{O}_{P2},[\hat{O}_{P2},\hat{G}]] = [\hat{O}_{P2},\hat{G}], \quad [\hat{O}_{P2},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + \hat{R}_{P3} \\ &[\hat{O}_{P3},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + 2\hat{R}_{P3'}, \quad [\hat{O}_{P2},\hat{R}_{P3'}] = 0, \quad [\hat{O}_{P3},\hat{R}_{P3'}] = -\hat{R}_{P3'} \\ &\langle |[\hat{O}_{P2},\hat{G}] = \langle |(3\hat{O}_{P1} - 2\hat{O}_{P2}), \quad \langle |[\hat{O}_{P3},\hat{G}] = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| - \hat{O}_{P3},\hat{G}| - \hat{O}_{P3}$$

$$\begin{split} \mathscr{G}(\lambda;\underline{\omega}) &:= \langle |e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle\,,\quad \underline{\omega}\cdot\hat{\underline{O}} := \varepsilon\hat{O}_E + \gamma\hat{O}_{P1} + \mu\hat{O}_{P2} + \nu\hat{O}_{P3} \\ \frac{\partial}{\partial\lambda}\mathscr{G}(\lambda;\underline{\omega}) &= \langle |\left(e^{ad_{\underline{\omega}\cdot\hat{\underline{O}}}}(\hat{G})\right)e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \stackrel{(*)}{=} \langle |\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}\left(e^{ad_{\mu\hat{O}_{P2}}}\left(\hat{G}\right)\right)\right)\right)\rangle e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{\nu\hat{O}_{P3}}}\left(e^{ad_{\mu\hat{O}_{P2}}}(\hat{G})\right)\right)e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(e^{ad_{\nu\hat{O}_{P3}}}\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right)\right)e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(\hat{G}+(e^{\mu}-1)[\hat{O}_{P2},\hat{G}]\right) \\ &+ e^{\mu}(e^{\nu}-1)[\hat{O}_{P3},\hat{G}] + (e^{\nu}-1)(e^{\mu}-e^{-\nu})\hat{R}_{P3'}\rangle e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(2\hat{O}_E+3(e^{\mu}-1)\hat{O}_{P1}+(4e^{\mu+\nu}-6e^{\mu}+2)\hat{O}_{P2} \\ &+(3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\hat{O}_{P3}\rangle e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \\ &= e^{2\varepsilon+\gamma}\langle |\left(2\frac{\partial}{\partial\varepsilon}+3(e^{\mu}-1)\frac{\partial}{\partial\gamma}+(4e^{\mu+\nu}-6e^{\mu}+2)\frac{\partial}{\partial\mu} \\ &+(3e^{\mu}+e^{-\nu}-3e^{\mu+\nu}-1)\frac{\partial}{\partial\nu}\rangle e^{\underline{\omega}\cdot\hat{\underline{O}}}e^{\lambda\hat{G}}||\rangle \end{split}$$

$$\frac{\partial}{\partial \lambda} \mathcal{G}(\lambda; \underline{\ln x}) = \hat{D} \mathcal{G}(\lambda; \underline{\ln x})
\hat{D} = x_{\varepsilon}^2 x_{\nu} (2\hat{n}_{\varepsilon} - 3\hat{n}_{\gamma} + 2\hat{n}_{\mu} - \hat{n}_{\nu}) + x_{\varepsilon}^2 x_{\nu} x_{\mu} (3\hat{n}_{\gamma} - 6\hat{n}_{\mu} + 3\hat{n}_{\nu}) + x_{\varepsilon}^2 x_{\nu} x_{\mu}^2 (4\hat{n}_{\mu} - 3\hat{n}_{\nu}) + x_{\varepsilon}^2 \hat{n}_{\nu}$$
(58)

$$\hat{O}_{P1} := igvee_{\dagger} \equiv \sum_{T \in \{I,L,R\}} igvee_{T}, \; \hat{O}_{P2} := igvee_{\dagger} \equiv \sum_{T \in \{I,L,R\}} igvee_{T}, \; \hat{O}_{P3} := igvee_{T}$$

$$\begin{split} &[\hat{O}_{P2},[\hat{O}_{P2},\hat{G}]] = [\hat{O}_{P2},\hat{G}], \quad [\hat{O}_{P2},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + \hat{R}_{P3} \\ &[\hat{O}_{P3},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + 2\hat{R}_{P3'}, \quad [\hat{O}_{P2},\hat{R}_{P3'}] = 0, \quad [\hat{O}_{P3},\hat{R}_{P3'}] = -\hat{R}_{P3'} \\ &\langle |[\hat{O}_{P2},\hat{G}] = \langle |(3\hat{O}_{P1} - 2\hat{O}_{P2}), \quad \langle |[\hat{O}_{P3},\hat{G}] = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| = \langle |\hat{O}_{P3},\hat{G}|$$

$$\begin{split} \mathscr{G}(\lambda;\underline{\omega}) &:= \langle |e^{\omega \cdot \hat{Q}} e^{\lambda \hat{G}}|| \rangle , \quad \underline{\omega} \cdot \hat{\underline{Q}} := \varepsilon \hat{O}_E + \gamma \hat{O}_{P1} + \mu \hat{O}_{P2} + \nu \hat{O}_{P3} \\ &\frac{\partial}{\partial \lambda} \mathscr{G}(\lambda;\underline{\omega}) = \langle |\left(e^{ad_{\underline{\omega} \hat{Q}}}(\hat{G})\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}}|| \rangle^{\stackrel{(*)}{=}} \langle |\left(e^{ad_{\nu \hat{O}_{P3}}} \left(e^{ad_{\nu \hat{O}_{P2}}} \left(e^{ad_{\nu \hat{O}_{P2}}} \left(e^{ad_{\nu \hat{O}_{P3}}} e^{\lambda \hat{G}} \right)\right)\right) \right) \right) \\ &= e^{2\varepsilon + \gamma} \langle |\left(e^{ad_{\nu \hat{O}_{P3}}} \left(\hat{G} + (e^{\mu} - 1)[\hat{O}_{P2}, \hat{G}] \right)\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \\ &= e^{2\varepsilon + \gamma} \langle |\left(\hat{G} + (e^{\mu} - 1)[\hat{O}_{P3}, \hat{G}] + (e^{\nu} - 1)(e^{\mu} - e^{-\nu})\hat{R}_{P3'}) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \\ &= e^{2\varepsilon + \gamma} \langle |\left(2\hat{O}_E + 3(e^{\mu} - 1)\hat{O}_{P1} + (4e^{\mu + \nu} - 6e^{\mu} + 2)\hat{O}_{P2} + (3e^{\mu} + e^{-\nu} - 3e^{\mu + \nu} - 1)\hat{O}_{P3}\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \\ &= e^{2\varepsilon + \gamma} \langle |\left(2\frac{\partial}{\partial \varepsilon} + 3(e^{\mu} - 1)\frac{\partial}{\partial \gamma} + (4e^{\mu + \nu} - 6e^{\mu} + 2)\frac{\partial}{\partial \mu} + (3e^{\mu} + e^{-\nu} - 3e^{\mu + \nu} - 1)\frac{\partial}{\partial \nu}\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \end{split}$$

$$\hat{O}_{P1} := igvee_{\dagger} \equiv \sum_{T \in \{I,L,R\}} igvee_{T}, \; \hat{O}_{P2} := igvee_{\dagger} \equiv \sum_{T \in \{I,L,R\}} igvee_{T}, \; \hat{O}_{P3} := igvee_{T}$$

$$\begin{split} &[\hat{O}_{P2},[\hat{O}_{P2},\hat{G}]] = [\hat{O}_{P2},\hat{G}], \quad [\hat{O}_{P2},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + \hat{R}_{P3} \\ &[\hat{O}_{P3},[\hat{O}_{P3},\hat{G}]] = [\hat{O}_{P3},\hat{G}] + 2\hat{R}_{P3'}, \quad [\hat{O}_{P2},\hat{R}_{P3'}] = 0, \quad [\hat{O}_{P3},\hat{R}_{P3'}] = -\hat{R}_{P3'} \\ &\langle |[\hat{O}_{P2},\hat{G}] = \langle |(3\hat{O}_{P1} - 2\hat{O}_{P2}), \quad \langle |[\hat{O}_{P3},\hat{G}] = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| = \langle |(4\hat{O}_{P2} - 3\hat{O}_{P3}), \quad \langle |\hat{R}_{P3'} = \langle |\hat{O}_{P3},\hat{G}| = \langle |\hat{O}_{P3},\hat{G}|$$

$$\begin{split} \mathscr{G}(\lambda;\underline{\omega}) &:= \langle |e^{\omega \cdot \hat{Q}} e^{\lambda \hat{G}}|| \rangle , \quad \underline{\omega} \cdot \hat{\underline{Q}} := \varepsilon \hat{O}_E + \gamma \hat{O}_{P1} + \mu \hat{O}_{P2} + \nu \hat{O}_{P3} \\ &\frac{\partial}{\partial \lambda} \mathscr{G}(\lambda;\underline{\omega}) = \langle |\left(e^{ad_{\underline{\omega} \hat{Q}}}(\hat{G})\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}}|| \rangle^{\stackrel{(*)}{=}} \langle |\left(e^{ad_{\nu \hat{O}_{P3}}} \left(e^{ad_{\nu \hat{O}_{P2}}} \left(e^{ad_{\nu \hat{O}_{P2}}} \left(e^{ad_{\nu \hat{O}_{P3}}} e^{\lambda \hat{G}} \right)\right)\right) \right) \right) \\ &= e^{2\varepsilon + \gamma} \langle |\left(e^{ad_{\nu \hat{O}_{P3}}} \left(\hat{G} + (e^{\mu} - 1)[\hat{O}_{P2}, \hat{G}] \right)\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \\ &= e^{2\varepsilon + \gamma} \langle |\left(\hat{G} + (e^{\mu} - 1)[\hat{O}_{P3}, \hat{G}] + (e^{\nu} - 1)(e^{\mu} - e^{-\nu})\hat{R}_{P3'}) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \\ &= e^{2\varepsilon + \gamma} \langle |\left(2\hat{O}_E + 3(e^{\mu} - 1)\hat{O}_{P1} + (4e^{\mu + \nu} - 6e^{\mu} + 2)\hat{O}_{P2} + (3e^{\mu} + e^{-\nu} - 3e^{\mu + \nu} - 1)\hat{O}_{P3}\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \\ &= e^{2\varepsilon + \gamma} \langle |\left(2\frac{\partial}{\partial \varepsilon} + 3(e^{\mu} - 1)\frac{\partial}{\partial \gamma} + (4e^{\mu + \nu} - 6e^{\mu} + 2)\frac{\partial}{\partial \mu} + (3e^{\mu} + e^{-\nu} - 3e^{\mu + \nu} - 1)\frac{\partial}{\partial \nu}\right) e^{\underline{\omega} \cdot \hat{Q}} e^{\lambda \hat{G}} \right)|| \rangle \end{split}$$

Outlook

- Development of tracelet theory for analyzing continuous-time Markov chains
- Algorithmic implementations of tracelet generators and analysis methods (\rightarrow ReSMT)
- Applications of tracelet Hopf algebras to combinatorics?

https://gitlab.com/nicolasbehr/ReSMT

Outlook

- Development of tracelet theory for analyzing continuous-time Markov chains
- Algorithmic implementations of tracelet generators and analysis methods (\rightarrow ReSMT)
- Applications of tracelet Hopf algebras to combinatorics?
- Long-term perspectives:
 - Formalization of categorical rewriting theory (CRT)
 via proof assistants (Coq!)
 - GReTA-ACT working group on CRT starting this fall
 - ⇒ Please contact me for details if you are interested!
 - Applications of Grothendiek fibrations and related concepts to CRT
 - "The in the room": chemical rewriting theory!

https://gitlab.com/nicolasbehr/ReSMT

https://www.irif.fr/~greta/

Outlook

- Development of tracelet theory for analyzing continuous-time Markov chains
- Algorithmic implementations of tracelet generators and analysis methods (\rightarrow ReSMT)

Thank you!

- Applications of tracelet Hopf algebras to combinatorics?
- Long-term perspectives:
 - Formalization of categorical rewriting theory (CRT)
 via proof assistants (Coq!)
 - GReTA-ACT working group on CRT starting this fall
 - ⇒ Please contact me for details if you are interested!
 - Applications of Grothendiek fibrations and related concepts to CRT
 - "The in the room": chemical rewriting theory!

https://gitlab.com/nicolasbehr/ReSMT

https://www.irif.fr/~greta/