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On the interesting special case of discrete graph rewriting

Idea: represent transformations of discrete (= vertex-only) graphs as a
certain form of diagrams

Elementary “one-step” diagrams:
’ output: a vertex

A\

Create a vertex: pl H

>

Delete a vertex: 1% .
‘ iInput: a vertex

Generic diagrams: ) - P
d=[(0,1,m)]. T
O — set of output vertices ‘

[ — set of input vertices 5 ®
m C O X I — (one-to-one) binary relation _ E
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On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, - ) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021



On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams
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On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, - ) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

Diagrammatic composition:

5(d) *58(d) = ) 8 (d2 <, d1> . dy <, dy =10y + O L+ Iy my + myy +my]
my EM 4,(dy)
matchings (i.e. one-to-one mappings) of outputs of d2 Into inputs of dl O

N

dy <, d =

(9, *4 ) is an associative unital algebra,
with unit element d, := o(|(D, D, D)].)
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On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, - ) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

>

vii=[({«}, 3, D). :
Elementary diagrams: e:=[({e},{e},{(e,e)D)]_
vi=[(D,{}, D).

>
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On the interesting special case of discrete graph rewriting

Notation: let D denote the set of equivalence classes d = [(O, I, m)] _ of diagrams

Idea: define a vector space 4 = (Y, +, - ) := span, (D) (with K = R or K = C), and denote
the basis vector labelled by d € D with 6(d) € 9

vii=[({},2,0)]. = :
Elementary diagrams: e =[({e},{e},{(e,0)})]. = I
vi=[@,{+} o). =

Notation: disjoint union on diagrams  d, Wd; := [(O, + O, L, + I;,my + m)]. = d, < d,

= every equivalence class d may be completely characterized by its “connected components”, in the sense that
VdeD: 3k, me Z,y:d= dk,f,ma dk,f,m = T Uk YO E 1y o8 m
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On the interesting special case of discrete graph rewriting

® B
VT L= [({ ° }a D, g)]N = _ :
Elementary diagrams: e:=[({ehteh il )DL = I

vi=vi i =[(g,{*},@)]. = z
® i

Heisenberg-Lie algebra
Lo = ({6(),6(v"),8(e)},[.,.1) Wwith [A, B] := A*, B — B*_, A), with the

only non-zero commutator given by [6(v), (v = &(e).
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On the interesting special case of discrete graph rewriting

o :
vi=[({e), @, @], £ I

Va\

Elementary diagrams: e =[({e},{e},{(e,e))]. =
yi=v' = (D, {},D)]. =

Heisenberg-Lie algebra
Lo = ({6(),6(v"),8(e)},[.,.1) Wwith [A, B] := A*, B — B*_, A), with the

only non-zero commutator given by [6(v), (v = &(e).

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,
I(Z 3)
(6(v) @ 6(v7) — 6(vT) ® 6(v) — (e))

U(L ) =

has a normal-ordered basis with elements of the form U, ;,, := S(vNP*R (ML ® 8(e)®™  (k,I,m € Z.)
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On the interesting special case of discrete graph rewriting

o :
vi=[({e), @, @], £ I

Va\

Elementary diagrams: e =[({e},{e},{(e,e))]. =
yi=v' = (D, {},D)]. =

Heisenberg-Lie algebra
Lo = ({6(),6(v"),8(e)},[.,.1) Wwith [A, B] := A*, B — B*_, A), with the

only non-zero commutator given by [8(v), 8(v1)] = &(e).

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,
I(Z 3)
(6(v) @ 6(v7) — 6(v™) ® 6(v) — (e))
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On the interesting special case of discrete graph rewriting

Poincaré-Birkhoff-Witt Theorem

The universal enveloping algebra of the Heisenberg-Lie algebra,

A I(Zs)
71T (8(v) @ 8(vT) — (v ® B(v) — S(e))

has a normal-ordered basis with elements of the form U, ;,,, := S(vHP*R (@ ® 8(e)®™  (k,I,m € Z.)

Notations:
. disjoint union on diagrams  d, Wd; :=[(O, + O, L, + I;,my, + m))]. = d, 4, d,

. dkfm .= VTLﬂkH'JVUij'Jewm

Theorem |[Behr et al. 20106]

There exists a isomorphism of algebras (<, *; )

e |

> U(L ), defined via p(6(dy 4 ,,)) = Uy ¢ -
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On the interesting special case of discrete graph rewriting

Interesting fact: the universal enveloping algebra % (£ @) IS a (hon-commutative, co-commutative) Hopf algebra.
= one may verify that the isomorphism @ extends to a Hopf-algebra isomorphism !

Coproduct of the diagram algebra

0 B U sd)=o(|4Jd) (@ € {v,ve))
- B xeX
° R . 5( |4 d):= 8(dy)
T XeEY
: > ¢ : *> ° AG@):= Y 8|+ d) ® 5 |4 &)
: - - : S YCX  yeY z€X\Y

Theorem [Blasiak et al. 2011, Behr et al. 2016]

(2,%4,A)is a Hopf algebra, with unitn : K — 2 : 1, = d(dg) and counite : D — K : 0(d) = 04,4
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On the interesting special case of discrete graph rewriting

Elementary diagrams:

dkfm::VT&kav&waewm pToo= .

y =
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On the interesting special case of discrete graph rewriting

Elementary diagrams:

d , =y gy lyedm = I

V=

Example diagrammatic normal-ordering formula

4 k
é(dkz,fz,mz) *@5(dk1,f1,m1) = Z ( 2) 7"( 1) 5(dkl+k2—r,f1+fz—r,m1+m2+r)

I

# of ways to form
1 output-to-input “wirings
(disregarding the order)
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Double Pushout (DPO) rewriting

D+—o— K
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Double Pushout (DPO) rewriting

O+——o0— K —i—— 1
) pushout ;r[

complement l

X ; ¢
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Double Pushout (DPO) rewriting

O+—o— K i — 1
T:j( pUShOUt ;j[ co?r:l;;(r)rl\l;nt ;j[
'm (X X 1 > X
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Organic chemistry via DPO-type rewriting (!)

o- C o C
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Source: Algorithmic Cheminformatics Group, SDU Odense
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Organic chemistry via DPO-type rewriting (!)
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Organic chemistry via DPO-type rewriting (!)

0= C O C o—°C
N+/ clz‘ N/ G N/ cI:
Ne”” c cZ
/gz\ /El\ 0 /E!z\ /EI\ 0 /E'z\ /E'\ 0
HCo- C7 e\ HC o €7 TN HC o—C7 S\
A N i O R e A R S
e 2 - AL
2 2 2
~ch, (1 ~ch,

Source: Algorithmic Cheminformatics Group, SDU Odense
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DPO rewriting theory does not really stop at this first definition...

O < O K ? > [

[ |

m’ (2) m (1) m

| ! !
rm (X)) < 5 X i > X
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DPO rewriting theory does not really stop at this first definition...
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Artwork by Angelika Villagrana
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Artwork by Angelika Villagrana
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Input graph Xo
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‘create an edge’
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‘create an edge’
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‘delete an edge”
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‘create an edge’
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‘create an edge”
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a TRACELET
(of length 5)
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DPO-type concurrency theorem
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DPO-type concurrency theorem

o1 r'io
Oy 4 151 O19 4 110
/ - \ / o \
X2 - Xl ‘ X()
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DPO-type concurrency theorem

roq r'10
Or; 4 21 O10 4 110
/ DPO DPO \
Oy - ‘ 120
DPO DPO
N N
Ro < X1 * X0
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DPO-type concurrency theorem

1 r'10
Op; - 21 O10 - 110
/ DPO DPO \
Oy - ‘ 120
DPO DPO
2 2
Ko + X1 * X0
DPO
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DPO-type concurrency theorem — “synthesis”
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DPO-type concurrency theorem — “synthesis”
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DPO-type concurrency theorem — “synthesis”

O10 120
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DPO-type concurrency theorem — “analysis”

ro1 r10
Op; “ 21 O10 4 110
/ DPO DPO \
Oy - ‘ 120
~N~ ~N~
Xg XO
DPO
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DPO-type concurrency theorem — “analysis”
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Oy ¢ 151 O19 4 l10
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DPO-type concurrency theorem — “analysis”
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DPO-type concurrency theorem — “analysis”
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From the DPO-type concurrency theorem to tracelets
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From the DPO-type concurrency theorem to tracelets
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From the DPO-type concurrency theorem to tracelets

21
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/ DPO DPO \
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From the DPO-type concurrency theorem to tracelets

O 4 21 019 +—2 l10
L(///////)\ DPO DPO ,&\\\\\\Ej
. y,
DPO DPO
y, y,
DPO DPO
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From the DPO-type concurrency theorem to tracelets
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From the DPO-type concurrency theorem to tracelets

TRACELET (of length 3)

o1
Oy 4 151 O19 <

DPO

DPO

DPO
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From the DPO-type concurrency theorem to tracelets

TRACELET (of length 3)

o1
Oy 4 151 O19 <

DPO
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Tracelet generation

Definition: tracelets of length 1

O «

¢ K 5

O <
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Tracelet generation

Definition: tracelets of length 2

021 ) ra21

10
|21 O10 ’
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Tracelet generation
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Tracelet generation

Definition: tracelets of length 2
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Tracelet generation

Definition: tracelets of length 3
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Tracelet generation

Definition: tracelets of length 3

o1 10
Oy < 151 O 4 l10
k(//////)\ DPO DPO' /k\\\\\\ﬁi
Oy 4 120
N
DPO ' DPO "
~
z 130
01 21 10 10
DPO DPO
Y,
130
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Tracelet generation

Definition: tracelets of length 3

DPO
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Tracelet composition
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Tracelet composition
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Tracelet composition
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Tracelet composition

4 4 4 L
[ [ o o [ [ ® ®

N S N o N S N
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1. Discrete rewriting and diagram Hopf Algebras
2. Categorical rewriting theory

3. From rewriting to tracelets

5. Tracelet Hopf algebras
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Motivation: key property of compositional rewriting theory

\

1)
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Construction of a suitable decomposition space

Tracelet Hopf algebras and decomposition spaces

Nicolas Behr Joachim Kock

Univ. de Paris, CNRS, IRIF, F-750006, Paris, France Universitat Autonoma de Barcelona &
Centre de Recerca Matematica

nicolas.behr@irif.fr
kock@mat.uab.cat

<— d3
d, T —d—
{*} 50 — X1 <— d X2 S1 — X3
<— dy 4 SO —> <— dy s
0
<— dy
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Construction of a suitable decomposition space
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Construction of a suitable decomposition space

codom(d,)

First hint: at length 3, the top and
bottom diagrams in the equivalence
suggest four “forgetful” mappings,
which are the candidates for the

face maps d,, ..., d;

<— d3
—d eI g
|
k) S50 X —d X, s Xa
%d() SO% %dl
<— dy J— 50 —
0
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Construction of a suitable decomposition space

<— d3
<— dj L ST —» <— d> M
{*} S0 — X1 <— d X2 51— X3
<— dy Py S0 —> <— dy S0 —3
0
<— do
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Construction of a suitable decomposition space
<— d3

 d <— dy P 4 §2 —>
]
{*} ! S0 — X1 <— dj Xz : s1 — X3
<— dy Py S0 —> <— dy S0 —3
0
<— do
1
I10
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Construction of a suitable decomposition space
<— d3

— dp 52 —» 1
< d, S| — <— d
{x} 50— X —d X> 51— X3
< d S0 — <— d
<— dj 4 S0 —
0
1
O10
Kio
O21
I10
2
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Construction of a suitable decomposition space

<— d
— d k 52 —» 1
{*} so — X $—d; X7 51— X3 N
<— dp Ja S0 — <— dj S0 —s
0
< dp
1
Op +—— | O |
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Construction of a suitable decomposition space
<— d3

— dp 52 —» 1
< d, S| — <— d
{x} 50— X —d X> 51— X3
< d S0 — <— d
<— dj 4 S0 —
0
1
O10
Kio
O21
I10
2
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Construction of a suitable decomposition space

<— d3
—d il ——— L
fx} 50— X —d X, — 51— X; ,
< dj S0 — <— d
<— do S0 —»
<— do
L 121
° ,/7\
Ka1 @  POC

PB - PO

0 Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021



Construction of a suitable decomposition space
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Construction of a suitable decomposition space

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021



Construction of a suitable decomposition space

Xg > Xo
_
dl dl
X2 ? X1
do
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Construction of a suitable decomposition space

<— d3
<— d e s — <— dp i
{*} 50 — X1 <— d; X2 S1 — X3
<— do Py SO —> <— d; P
0
<— dy

Xeo IS @ decomposition space. This means that for all 0 < i < n the two squares

dyt1 dy
Xn—H > Xn XrH—l ? Xn
d; d; dit1 d;
Xn 7 > Xn—l Xn a0 > Xn—l

are (homotopy) pullbacks.
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Plan of the talk

1. Discrete rewriting and diagram Hopf Algebras
2. Categorical rewriting theory

3. From rewriting to tracelets

4. Tracelet decomposition spaces
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‘Sequential” vs. “diagrammatic” interpretation of tracelets
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‘Sequential” vs. “diagrammatic” interpretation of tracelets

EA--
D
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‘Sequential” vs. “diagrammatic” interpretation of tracelets

MR

L

=y =TI1S(=4,U=¢U =7) —

=, — abstraction equivalence (= point-wise isos) N

=¢ — shift equivalence (= "sequential commutativity”)

=, — equivalence up to trivial tracelets, i.e., for any

tracelet T, we define T = TH£Ty =5 Ty'sT
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‘Sequential” vs. “diagrammatic” interpretation of tracelets

CND
\ ) pd pd
N
L
—S
C N Y
- o o o o ! R e e
=N .—VSt(:AU=SU=T) T :/ \/ \
=, — abstraction equivalence (= point-wise isos) N

=¢ — shift equivalence (= "sequential commutativity”)

= — equivalence up to trivial tracelets, i.e., for any . _
T Ty Ty = [TyosTyl. = [Tg'0£T,]-
tracelet T, we define T = TH£Ty =5 Ty'sT
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|racelet algebra structure B. & Kock, 2021]

Definition: Primitive tracelets

Let Ty := T /=, denote the set of =y\-equivalence classes of tracelets. Then Brim(Ty ), the set of primitive tracelets, is defined as

Peim(Ty) :={[T]=y|T # To\ ATa, Ig# Tg: T =N TaW Tg}.
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|racelet algebra structure B. & Kock, 2021]

Definition: Primitive tracelets

Let Ty := T /=, denote the set of =y\-equivalence classes of tracelets. Then Brim(Ty ), the set of primitive tracelets, is defined as

Peim(Ty) :={[T]=y|T # To\ ATa, Ig# Tg: T =N TaW Tg}.

Definition: Tracelet K-vector space T

L et T be the K-vector space spanned by a baS|s iIndexed by =n-equivalence classes, in the sense that there exists an isomorphism
0 : Iy = basus(‘I). We will use the notation T := §(T) for the basis vector associated to some class T € Ty. We denote by

an(‘J’) C T the sub-vector space of T spanned by basis vectors indexed by primitive tracelets.
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|racelet algebra structure B. & Kock, 2021]

Definition: Primitive tracelets

Let Ty := T /=, denote the set of =y\-equivalence classes of tracelets. Then Brim(Ty ), the set of primitive tracelets, is defined as

Peim(Ty) :={[T]=y|T # To\ ATa, Ig# Tg: T =N TaW Tg}.

Definition: Tracelet K-vector space T

L et T be the K-vector space spanned by a baS|s iIndexed by =n-equivalence classes, in the sense that there exists an isomorphism
0 : Iy = basus(‘I). We will use the notation T := §(T) for the basis vector associated to some class T € Ty. We denote by

an(‘J’) C T the sub-vector space of T spanned by basis vectors indexed by primitive tracelets.

Definition: Tracelet algebra product and unit

Let ® = ®k be the tensor product operation on the K-vector space T Then the multiplication map ¢ and the unitmap n : K — T
are defined via their action on basis vectors of J as follows:

u:?@?%%:?@?’%?o?/, ToT = Z 5([T’ZT']E)
pueEMT(T)

n:K%{]\':ka-?@.

Both definitions are suitably extended by (bi-)linearity to generic (pairs of) elements of T

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021



Tracelet coalgebra, bialgebra and filtration B. & Kock, 2021]

Definition: Tracelet coproduct and counit

Fixing the notational convention W,y T; := T4 for later convenience, let T =y Wi T; be the tracelet normal form for a given tracelet
T € T (where T; € Prim(Ty) foralli € 1if T #£ Tg). Then the tracelet coproduct A and tracelet counit £ are defined via their action

on basis vectors T = §(T) of T as
ATSTRT: T A(T) = T, 0 T
—STRT: T AT) =) 6 ({Sx }) ® (Lg\x y})

ande: T - K: T coeffs (?). Both definitions are extended by linearity to generic elements of T
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Tracelet coalgebra, bialgebra and filtration B. & Kock, 2021]

Definition: Tracelet coproduct and counit

Fixing the notational convention W,y T; := T4 for later convenience, let T =y Wi T; be the tracelet normal form for a given tracelet
T € T (where T; € Prim(Ty) foralli € 1if T #£ Tg). Then the tracelet coproduct A and tracelet counit £ are defined via their action

on basis vectors T = §(T) of T as
ATSTRT: T A(T) = T, 0 T
—STRT: T AT) =) 6 ({Sx }) ® (Lg\x y})

ande: T - K: T coeffs (?). Both definitions are extended by linearity to generic elements of T

Theorem:
The data (iAT, u,n, A, e) defines a bialgebra.
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Tracelet coalgebra, bialgebra and filtration B. & Kock, 2021]

Definition: Tracelet coproduct and counit

Fixing the notational convention W,y T; := T4 for later convenience, let T =y Wi T; be the tracelet normal form for a given tracelet
T € T (where T; € Prim(Ty) foralli € 1if T #£ Tg). Then the tracelet coproduct A and tracelet counit £ are defined via their action

on basis vectors T = §(T) of T as

A:‘j“%%@‘f’::?HA(-T_) :225 (LEXTX} ) e (L’EE'FJ\XTy} )

ande: T - K: T coeffs (?). Both definitions are extended by linearity to generic elements of T

Theorem:

The data (iAT, u,n, A, e) defines a bialgebra.

Theorem:

The tracelet bialgebra (‘3‘, u,n, A, e) is connected and filtered, with connected component T0) = spanK{_T'@}, and with the higher
components of the filtration given by the subspaces

vn>0: T .= spank {/7\'1 .. T,

7. T, ¢ Prim(?)} |
where in a slight abuse of notations ?1 H... W ?n =0(T1W...uT,).
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ITracelet Hopf algebra structure B. & Kock, 2021]

The tracelet bialgebra (‘?, u,n, A, e) admits the structure of a Hopf algebra, where the antipode S, which is to say the endomorphism

of T that makes the diagram below commute,

TRT Seld — T QT
A AN
A , H
L N A
T € > K B > T
AN e
A u
Y S
TRT 1des — TRT

IS given by S = Id*"". The latter denotes the inverse of the iIdentity morphism Id : T — T under the convolution product x of linear
endomorphisms on J. More concretely, letting e := n o € denote the unit for the convolution product x,

S(T)=Id* (T)=(e—(e— Id)* )+ (e~ ld)y" KT

k>1
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ITracelet Hopf algebra structure B. & Kock, 2021]

The tracelet bialgebra (‘?, u,n, A, e) admits the structure of a Hopf algebra, where the antipode S, which is to say the endomorphism

of T that makes the diagram below commute,

TRT sold—— TRT
e AN
A . u
L T M,
T € > K B > T
AN A
A u
QN e
TRT ldzs — T T

IS given by S = Id*"". The latter denotes the inverse of the iIdentity morphism Id : T — T under the convolution product x of linear
endomorphisms on J. More concretely, letting e := n o € denote the unit for the convolution product x,

S(T)=Id* (T)=(e—(e— Id)* )+ (e~ ld)y" KT

k>1

Let Lg = (Prim(‘j’), .,.]o) denote the tracelet Lie algebra, with [T, Tl := To T’ — T’ o T (commutator operation w.r.t. ¢). Then the
tracelet Hopf algebra is isomorphic (in the sense of Hopf algebra isomorphisms) to the universal enveloping algebra of L.
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On Stochastic Rewriting and Combinatorics
via Rule-Algebraic Methods™

Nicolas Behr

Université de Paris, CNRS, IRIF
F-750006, Paris, France

nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described 1n terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

0¢0¢ HdVHOINHA 1L
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Example: generating planar rooted binary trees (PRBTSs) uniformly

The Remy uniform generator (heuristics)
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Example: generating planar rooted binary trees (PRBTs) uniformly

‘counting” after rewriting ‘counting” before rewriting
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Example: generating planar rooted binary trees (PRBTs) uniformly

U

A
/

‘counting” after rewriting ‘counting” before rewriting
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Example: generating planar rooted binary trees (PRBTs) uniformly

non-trivial
options

‘counting” after rewriting ‘counting” before rewriting
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Example: generating planar rooted binary trees (PRBTs) uniformly

non-trivial
options

1 non-trivial
option

‘counting” after rewriting ‘counting” before rewriting
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Example: generating planar rooted binary trees (PRBTSs) uniformly

0})13:\/5 Z \/a 0P23\</ Z \</a Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |
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Example: generating planar rooted binary trees (PRBTSs) uniformly

0})13:\/5 Z \/a 0P23\</ Z \</a Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |

Op2,[0p2,G)] = [0p, G, -Rp3
Op3,[0p3,G]] = [Op3,G] +2Rpy, [0 ' Op3,Rpy] = —Rp3
(|[Op2,G] = (| (30p1 —20 )p3,G) = (| (40p2 —30p3), {|Rpy = (| Op3
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Example: generating planar rooted binary trees (PRBTSs) uniformly

01)13:\/5 Z \/a 0P23\</ Z \</, Ops3 = = Z
T Te{l,LR} | | Te{lLR} | Te{l,LR}
| * T
| |

Opy,[0p2,G]] = [Op2,G],
:OP37 0P3vé — :OAP37GA:
(|[Op2,G) = (| (30p1 —20

Nicolas Behr, ACT 2021, University of Cambridge, July 15, 2021



Example: generating planar rooted binary trees (PRBTSs) uniformly

Opi 3:\/5 Z \/a 0P23\</ Z \</, Ops3 := = Z
T Te{l,LR} | * Te{lLR} | Te{l,LR}
| | % T
N |

AGW w'Qiz SOAE+YOAP1‘|‘UOAP2‘|‘VOAP3

= (|eCe

e o (o (¢ 00 A6
TR % Y<I( | (¢*40r2(6))) ) .
S e

p2,[0p2, Gl = [Op2, 6], [Op2,[0p3, 6] = [Op3 G+R —|—€‘u (e\/ — 1)[0/\})3,6] + (ev — 1)(€u — e_v>IéP3/)eQ.QAeAG‘ |>

[0 ,[0p3,G]] = [Op3 G+2R [Op2, Rpy] =0, / A
(1[0r2,G) = (| (30p1 —20p > (1[Op3,G) = <|<4o ~30p > <\RP3,:<\0P3 _ 628+Y<| (QOAE —|—3(e“ — 1)OAP1 + (46H+V 6et ‘I’Z)OAPZ
+(3et 467V —3ettV —1)O0p3 )e——eAG )

= (| (25 +3(e — 1) 5+ (4eu+v 6et +2) 7
+(3et +e7V — 3e“+" — 1) )e— —eAG\ \}
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Example: generating planar rooted binary trees (PRBTSs) uniformly

OApliz\/E Z \/ 0P21\</ Z \</a Op3 := = Z
| Te{I,L.R} : Te{lLR} | Te{l,L.R}
| * T
|

=X Y(| (G+ (e" —1)[0p2, G
+et eV —1)[0p3, Gl + (¢V — 1) (e — e V)Rpy )e2CerY| |)

= 27 (| (20 +3(eH — 1)Opi + (4eh+Y — 6et +2)Ops
[OAPz,é]\*</—I—></+\<L/\§</% Rpy = | _|_(3eﬂ_|_e—V_3elJ+V_1)0P3) -0 7LG||>
=628”<|(2%+3(e“—1)a%+(4eﬂ+v 6et +2) £
)
[ww]%“%“&&%

+(3et +e7V —3eH Y — 1) 8\,)6— 026G ||

{01’2 {01’2 GH—[‘)PZ G] O, [01[’3 01l = ]0P3 dl +[RP3 ~ Granted that the derivation of the evolution equation for ¢ (A;®) is somewhat involved, one may
Op3,[0p3,G]| = [Op3,G] +2Rpy,  [Op2,Rpy] =0, [Op3,Rpy] = —Rpy
(092,61 = (| (3051 —201), (|[0r3,G] = (| (4052 —30p3), (| Rpz = (| O extract from 1t a very 1nteresting insight via a transformation of variables @; — Inx; (which entails that

ai) — Xigeo 9., and collecting coefficients for the operators #; := x; a‘i l

a (k Inx) = D¥(A;1Inx)

. (58)
D = xpxy (2 — 3y + 2y — Ay ) + xgxy Xy (3 — 6Ay + 37y ) + xpxyxy (4h, — 3Ay) + x5y
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lanar rooted binary trees (PRBTs) uniformly

generating p
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Outlook

+ Development of tracelet theory for analyzing continuous-time Markov chains

- Algorithmic implementations of tracelet generators and analysis methods (—ReSMT)
- Applications of tracelet Hopf algebras to combinatorics”

000774

https://gitlab.com/nicolasbehr/ReSMT
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Outlook

+ Development of tracelet theory for analyzing continuous-time Markov chains

- Algorithmic implementations of tracelet generators and analysis methods (—ReSMT)
- Applications of tracelet Hopf algebras to combinatorics”

- Long-term perspectives:

- Formalization of categorical rewriting theory (CRT)
via proof assistants (Coq!)

- GReTA-ACT working group on CRT starting this fall

= Please contact me for details if you are interested!

- Applications of Grothendiek fibrations and related
concepts to CRT

https://www.1irif.fr/~greta/

* “The “#% in the room”: chemical rewriting theory!
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