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12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n
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o
, T1 :=

⇢
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�
, T2 :=
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)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
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d
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⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
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In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).
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In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):
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In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
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The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
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Figure 3. Abstract derivation G
p,m
==) H with p = (L

l
 � K

r
�! R). A concrete chemical

derivation (reaction), though with a large part of Coenzyme A abstracted into a single
vertex. Note that all hydrogen atoms are shown explicitly and that G as well as H
consist of two components. Edges (bonds) being changed during the transformation are
shown in red. The context K of the rule, and its matches in the other graphs, is shown
in green.

as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can

Preprint 5/48

organic chemistry

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Welcome to Kappa

Kappa is a rule-based language for modeling systems of interacting agents. While its current development is primarily motivated by
molecular systems biology, its range of applications is quite broad.

What does rule-based mean?
Rule-based modeling languages for molecular biology, such as Kappa
and BNGL, or organic chemistry, such as Mød, can be used to write
mechanistic models of complex reaction systems.

Consider a patch of the world that acts as a unit of interaction. Such a
patch could be a single agent or a combination of agents. In systems
biology applications, an agent would be a protein and a combination of
agents would be a complex of non-covalently bound proteins; in
chemistry, an agent would be an atom and a combination of agents
would be a molecule.

Imagine further that the context relevant to the interaction (green in the
Figure) is smaller than the patch itself (brown). This splits the patch into
regions: a context that is irrelevant to the action, one that is required for
the action (also known as the pre-condition), a further context that is
altered by the action (the post-condition), and the part of the required
context that remains invariant.

It then makes sense to separate the action and its necessary conditions
from the event that results if the action were to occur in the broader
context that is the patch. This separation gives rise to the concept of a
rule. The green context on the left of a rule only specifies those aspects
of a patch that are necessary for interaction.

A rule might therefore apply to many patches, and a patch might be
acted upon by many rules. The spirit of this approach is analogous to
organic chemistry, which makes a distinction between a rule specifying
the transformation of molecular parts and the reaction induced by it in
the context of a complete molecular arrangement.

Since Kappa entities are graphical structures, rules are graph-rewrite
directives. In a dynamical setting where rules cause state transitions in a
population of patches, rules fire stochastically based on their activity as determined by standard continuous-time Monte Carlo (as in
stochastic chemical kinetics).

By separating a rule from a patch on which it acts we gain a much clearer approach to mechanistic causality. If causal analysis were to
proceed at the level of patches, it would obfuscate the causal structure of a system by dragging along context irrelevant to an event. In
addition to simulation and static analysis, the Kappa platform also extracts the causal structure of a rule system from its simulation traces.

Is this different from agent-based modeling?
The term "agent-based" is often used informally to refer to a modeling style in which discrete units of interaction (the agents) are defined ad
hoc, without a systematic internal structure. In such a setting, the complex of a kinase and a substrate would be considered an agent. This
is not the setting Kappa is meant for (although it could be used that way). Rather, in Kappa, an agent is an atomic entity with a minimal
signature (a set of resources for interaction) and a complex explicitly reveals—by a graphical representation—its composition and
connectivity in terms of atoms. Because of this structure, the patterns that appear in rules select the configurations to which they apply
through graph matching. To avoid confusion with the informal meaning of "agent-based", we refer to Kappa as a "rule-based" modeling
approach.

Kappa is an ongoing open-source development supported by several partners and involving researchers from several institutions. Most
standalone Kappa tools are software agents (web services) that communicate through REST protocols. You can use them individually and
interactively, locally on your computer or remotely through the internet; you can script over them (there is a Python wrapper), or you can use
a browser-based User Interface as well as a standalone app that integrates them.
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Figure 14. Illustration of a pathway similar to the one depicted in Fig. 2a of [44],
using fewer reactions. This solution category is the framed blue cell of Tab. 3. The
highlighted sub-pathway is the pathway from Tab. 4a.
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MedØlDatschgerl
MedØlDatschgerl (MØD) is a so!ware package developed for graph-based cheminformatics. It includes a general graph transformation system for automatically
generating reaction networks from graph grammar formulations of chemistries.

The so!ware is primarily implemented in C++, but the package includes comprehensive Python bindings that provide easy access to most functionality. The package also
includes a large visualisation module that makes it possible to automatically visualise molecules, reactions, and reaction networks. Examples of how to use the Python
interface and the visualisation capabilities can be seen in the examples section of the documentation. The examples can be explored interactively in the live playground
below.

Each release is available at GitHub. Please also use GitHub for reporting bugs, suggesting features, and contributing code. The documentation can be found at the GitHub
Page.

Live Playground
We provide limited access to a server with a MØD installation, for illustrating the examples. When it is online an editor and a read-only terminal will appear in the frame
below. The Python snippets from the examples section can be loaded into the editor and edited at will.

To run the code in the editor, press the Run button. You can abort your run with the Kill button. A!er a successful run, a summary link will appear where you can access a
PDF with the figures you have printed. During the run the terminal on the right will show the exact output of running your script, meaning any print calls will show up
there.

Note  If the frame below is empty the playground server is temporarily o"line.
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If you use MØD in your research, you may want to cite some of the following papers. You may also be interested in the Graph Grammar Library, which has been used in
early versions of MØD.
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shown in red. The context K of the rule, and its matches in the other graphs, is shown
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as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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Welcome to Kappa

Kappa is a rule-based language for modeling systems of interacting agents. While its current development is primarily motivated by
molecular systems biology, its range of applications is quite broad.

What does rule-based mean?
Rule-based modeling languages for molecular biology, such as Kappa
and BNGL, or organic chemistry, such as Mød, can be used to write
mechanistic models of complex reaction systems.

Consider a patch of the world that acts as a unit of interaction. Such a
patch could be a single agent or a combination of agents. In systems
biology applications, an agent would be a protein and a combination of
agents would be a complex of non-covalently bound proteins; in
chemistry, an agent would be an atom and a combination of agents
would be a molecule.

Imagine further that the context relevant to the interaction (green in the
Figure) is smaller than the patch itself (brown). This splits the patch into
regions: a context that is irrelevant to the action, one that is required for
the action (also known as the pre-condition), a further context that is
altered by the action (the post-condition), and the part of the required
context that remains invariant.

It then makes sense to separate the action and its necessary conditions
from the event that results if the action were to occur in the broader
context that is the patch. This separation gives rise to the concept of a
rule. The green context on the left of a rule only specifies those aspects
of a patch that are necessary for interaction.

A rule might therefore apply to many patches, and a patch might be
acted upon by many rules. The spirit of this approach is analogous to
organic chemistry, which makes a distinction between a rule specifying
the transformation of molecular parts and the reaction induced by it in
the context of a complete molecular arrangement.

Since Kappa entities are graphical structures, rules are graph-rewrite
directives. In a dynamical setting where rules cause state transitions in a
population of patches, rules fire stochastically based on their activity as determined by standard continuous-time Monte Carlo (as in
stochastic chemical kinetics).

By separating a rule from a patch on which it acts we gain a much clearer approach to mechanistic causality. If causal analysis were to
proceed at the level of patches, it would obfuscate the causal structure of a system by dragging along context irrelevant to an event. In
addition to simulation and static analysis, the Kappa platform also extracts the causal structure of a rule system from its simulation traces.

Is this different from agent-based modeling?
The term "agent-based" is often used informally to refer to a modeling style in which discrete units of interaction (the agents) are defined ad
hoc, without a systematic internal structure. In such a setting, the complex of a kinase and a substrate would be considered an agent. This
is not the setting Kappa is meant for (although it could be used that way). Rather, in Kappa, an agent is an atomic entity with a minimal
signature (a set of resources for interaction) and a complex explicitly reveals—by a graphical representation—its composition and
connectivity in terms of atoms. Because of this structure, the patterns that appear in rules select the configurations to which they apply
through graph matching. To avoid confusion with the informal meaning of "agent-based", we refer to Kappa as a "rule-based" modeling
approach.

Kappa is an ongoing open-source development supported by several partners and involving researchers from several institutions. Most
standalone Kappa tools are software agents (web services) that communicate through REST protocols. You can use them individually and
interactively, locally on your computer or remotely through the internet; you can script over them (there is a Python wrapper), or you can use
a browser-based User Interface as well as a standalone app that integrates them.
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knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Figure 14. Illustration of a pathway similar to the one depicted in Fig. 2a of [44],
using fewer reactions. This solution category is the framed blue cell of Tab. 3. The
highlighted sub-pathway is the pathway from Tab. 4a.
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Figure 15. Illustration of the shortest NOG pathway, denoted by the framed green cell
in Tab. 3. It uses three different phosphoketolase reactions: XPK, FPK, and SPK. The
highlighted sub-pathway is the pathway from Tab. 4b.
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MedØlDatschgerl
MedØlDatschgerl (MØD) is a so!ware package developed for graph-based cheminformatics. It includes a general graph transformation system for automatically
generating reaction networks from graph grammar formulations of chemistries.

The so!ware is primarily implemented in C++, but the package includes comprehensive Python bindings that provide easy access to most functionality. The package also
includes a large visualisation module that makes it possible to automatically visualise molecules, reactions, and reaction networks. Examples of how to use the Python
interface and the visualisation capabilities can be seen in the examples section of the documentation. The examples can be explored interactively in the live playground
below.

Each release is available at GitHub. Please also use GitHub for reporting bugs, suggesting features, and contributing code. The documentation can be found at the GitHub
Page.

Live Playground
We provide limited access to a server with a MØD installation, for illustrating the examples. When it is online an editor and a read-only terminal will appear in the frame
below. The Python snippets from the examples section can be loaded into the editor and edited at will.

To run the code in the editor, press the Run button. You can abort your run with the Kill button. A!er a successful run, a summary link will appear where you can access a
PDF with the figures you have printed. During the run the terminal on the right will show the exact output of running your script, meaning any print calls will show up
there.

Note  If the frame below is empty the playground server is temporarily o"line.
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shown in red. The context K of the rule, and its matches in the other graphs, is shown
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as the commutative diagram

L K R
l r

G D H

m d n

(1)

This notation has a precise mathematical meaning within category theory and forms the
basis for the well-definedness of the machinery of graph rewriting. It can intuitively be
understood in terms of molecules that react and the parts of the molecules that define
the reaction mechanism, i.e., the rule itself, as in Fig. 3.

Chemical transformation rules have a very special structure within the realm of
graph rewriting operations because atoms are preserved in the course of a reaction.
Only the chemical bonds are rearranged. Thus all morphisms are necessarily injective
and L\K and R\K contains only edges. Each derivation therefore implies a
well-defined atom-atom map between educts and products. A concrete example of a
chemical derivation is shown in Fig. 3.

Strategies to Explore a Chemical Universe A chemical universe [41], specified
by a collection of reaction rules (i.e., particular types of chemical reactions of interest
and a collection of start molecules) comprises all molecules that can be generated from
the starting molecules by repeated application of the available rules. Each graph
(molecule) thus becomes a vertex in the hypergraph and each derivation G) H

becomes a directed hyperedge.
It is important to note that chemical universes can be very large. Polymerization

reactions, for example, generate mathematically infinite chemical universes. Brute force
enumeration is therefore usually infeasible. Well-defined exploration strategies [23] can
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A fundamental challenge: causal pathway dynamics

knowledge or the need to curtail complexity (or both). The utility of

mechanistic models appears further diminished by statistical models

that can yield prediction without concomitant understanding.

Another issue is the perception that mechanistic models, because

difficult to build, are rarely kept in sync with a rapidly evolving

knowledge base. These are not arguments against the need for mech-

anistic models in interpreting interaction data. Rather, these argu-

ments articulate the need for mechanistic models that are scalable,

easy to update and fork and based on a formal foundation condu-

cive to computer-aided reasoning. In this contribution, we lay out

our ideas and their implementation in support of this vision.

2 The rule-based approach

Technology for making, running and analyzing large dynamic mod-

els, though in its infancy, is progressing significantly (Bachman and

Sorger, 2011; Cohen, 2015; Gyori et al., 2017; Loew and Schaff,

2001). One powerful component are rule-based languages, such as

Kappa (Danos et al., 2007a) and BioNetGen (Faeder et al., 2009;

Harris et al., 2016) for molecular biology and Mød (Andersen et al.,

2016) for organic chemistry.

Common to rule-based languages are entities with a structure

represented as a graph and rules that are graph-rewrite directives

(Fig. 1a and b). The point of a rule is to distinguish between the

transformation of a structure fragment and the reaction instance

resulting from it in the context of specific entities. This distinction is

a key organizing principle in chemistry (Fig. 1a). Since a particular

interaction between proteins often appears to depend on some but

not all aspects of their state, rule-based languages adapt the chem-

ical perspective to molecular systems biology by viewing proteins as

higher-order atoms and non-covalent associations between proteins

as higher-order molecules (Fig. 1b).

A rule-based language sets a specific level of granularity at which

rules ‘axiomatize’ interactions. For example, a rule of chemical

transformation, as in Figure 1a, only exposes the net result of under-

lying electronic rearrangements, which are governed in turn by

‘arrow (or electron) pushing’ rules (Kermack and Robinson, 1922)

at a lower level of abstraction. Although not explicitly represented,

these processes are not ignored, as they inform what a rule should

say. Likewise, rules of protein interaction, Figure 1b and c, are based

on structural considerations, bioinformatic sequence analysis and

biochemical mechanisms reported in the literature (or hypothesized

by the modeler). Yet, a rule does not expose these lower-level

aspects, but summarizes their overall effect in terms of pre- and

post-conditions on protein state.

2.1 Agents, patterns, embeddings and activity
At the heart of languages like Kappa and BioNetGen lies the agent

abstraction, Figure 1c, which conceptualizes a protein as an agent

with an interface of sites that represent distinct interaction capabil-

ities, such as binding and post-translational modification (Fig. 1c).

Through their sites, agents can connect into site graphs (Fig. 1). A

site graph that exhibits the full interface and state of all its agents

represents a molecular species. A rule r : Lr !Rr involves two site

graphs, Lr and Rr, which usually mention some but not all sites of

their agents. Lr and Rr are therefore patterns, not molecular species

(Fig. 1).

The state of a system is itself a graph consisting of a (large) en-

semble of disconnected site graphs, each representing one instance

of a molecular species. We call such an ensemble a mixture (as in re-

action mixture) and denote it byM. A rule r is applied to a mixture

M by embedding Lr into M, which means a match in M of all

agent types, site names and states (including binding states) men-

tioned in Lr. A rule is executed by replacing the part of the mixture

matched to Lr withRr (Fig. 2).

A model is a collection of rules with an initial mixture. The sto-

chastic behavior of a model is explored using continuous time

Monte–Carlo (Boutillier et al., 2017a; Danos et al., 2007b;

Gillespie, 2007; Sneddon et al., 2011) or CTMC for short. For this

purpose, a rule r is assigned a constant, cr, which is the instantan-

eous probability rate that the rule triggers on any given embedding

of Lr inM (Fig. 2). The activity ar of a rule r (i.e. its propensity to

fire) depends on the total number of embeddings of Lr in M (mass

action), denoted by j Lr;M½ "j, and is given by ar ¼ crj Lr;M½ "j=rr,

where rr is the number of symmetries of Lr preserved by r. The term

j Lr;M½ "j=rr is the number of physical configurations that are

(a)

(c)

(b)

Fig. 1. The concept of a rule. Panel (a): In chemistry, a rule of transformation

specifies a fragment of structure L and its modificationR. A reaction instance

occurs when one or more molecules jointly contain (left dotted arrow) the

fragment L, yielding one or more products in which the corresponding occur-

rence of L has been replaced by R. Panel (b): Rule-based languages trans-

pose the idea of chemistry to interactions among agents (blue nodes), seen in

analogy to atoms and complexes of connected agents, seen in analogy to

molecules. Agents have sites (instead of valences) that can carry state (here

indicated as black and red disks), upon which interactions depend. This gives

rise to the concept of a site graph, in which an agent-node (or node for short)

is connected to its site-nodes (or sites for short), shown as directly attached.

Importantly, sites, not nodes, anchor edges and a site can anchor at most one

edge. Interactions can change the state and connectivity of agents. The

embedding of a site graph, such as L, into a target graph, such as i, is a nat-

ural extension of a sub-graph isomorphism (see also Fig. 2). Sites and states

not mentioned in L are ignored. Given a transformation rule L ! R, an

embedding of L into a target graph permits the matching sub-graph to be

replaced with R. Panel (c): In rule-based languages for molecular biology

agents stand for proteins and sites for their interaction capabilities, without,

however, representing the underlying physical features and processes ena-

bling them. A hypothesis or an assertion in the literature (i) typically mentions

proteins whose agent abstraction (ii) involves several sites, collectively

referred to as the agent’s interface. The interface (ii) appropriate for a particu-

lar model can be assembled manually or automatically by scanning bioinfor-

matic databases. The assertion (i) is converted, manually or with computer-

assisted reading, into a rule rendered graphically (iii) or textually (iv). Since a

rule mentions only the sites and states necessary for a transformation, it is

subject to revision as knowledge evolves. Sufficiency is often not within pur-

view of experimental techniques, as not all biochemical aspects of an inter-

action can be observed
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Fig. 4. Rule application in Kappa. First, a match between the pattern on the left hand side of a rule (blue lens) and the mixture (bottom) is identified. The action specified

by the rule is then applied to the matching configuration, resulting in a new configuration according to the rule’s right hand side (red circle). Many matchings may be

possible for any given rule and many different rules may be applicable at any given moment. Rules and matchings are chosen for execution in a way that generates

probabilistically correct sequences of events, following a generalization [3] of the Doob-Gillespie algorithm [5, 6] for stochastic chemical kinetics.

The concept of a match can be extended to expressions (mixtures) E′ and E, by saying that E′ conforms to E, written as E′ ! E, if every
agent in E′ conforms to a distinct agent in E. In particular, anything conforms to an empty expression. Usually, E′ is a reaction mixture,
and E is the pattern on the lhs of a rule. We next formalize the notion of "being conformant” as a satisfaction relation !. Symbols refer to the
corresponding syntactical categories as in the agent Definition 1.1. The specificity ranking of binding states is such that ‘?’ (unknown) subsumes
‘ε’ (free) and ‘−’ (bound), and ‘−’ (bound) subsumes a binding label indicating a specific bond to an agent identified in the expression. Likewise,
the specificity ranking of internal states is such that ‘ε’ (unspecified) subsumes any specified state. In symbols:

ε

binding state: ?

!!!!!!

""""
"" internal state: ε ## ι ∈ V

− ## λ ∈ N,

[5]

where the arrow means "is a superset of" (or, equivalently "is less specific than"): x → y ≡ x ⊇ y. Equality applies between two λs that are
identical in value. Of course, we have ε = ε and ? = ? (question marks). In the following, a fraction denotes an inference from the precondition
(in the numerator) to the postcondition (in the denominator), i.e., A

B means "if A then B".

Definition 1.5 (Conforming, Matching). To establish whether E′ conforms to (matches) E, E′ ! E, apply the following criteria:

(i) site match nλ
′

ι′ ! nλι , if λ′ ⊆ λ and ι′ ⊆ ι

(ii) empty interface σ′ ! ∅

(iii) interface
s′ ! s σ′ ! σ
s′,σ′ ! s,σ

(iv) agent name
σ′ ! σ

N(σ′) ! N(σ)

(v) empty expression E′ ! ε

(vi) expression
a′ ! a E′ ! E
a′, E′ ! a, E

Footline Author PNAS Issue Date Volume Issue Number 5

source: The Kappa platform for rule-based 
modeling, Boutillier, P., Maasha, M., Li, X., 
Medina-Abarca, H.F., Krivine, J., Feret, J., 
Cristescu, I., Forbes, A.G. and Fontana, W., 
2018, Bioinformatics, 34(13), pp.i583-i592.
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This talk
An alternative approach to enumerative combinatorics based upon rewriting theory:

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

• generate structure S via applying 
rewriting rules to some initial 
configuration “in all possible ways” 

• count patterns via applying special 
types of rewriting rules 

• formulate generating functions via 
linear operators associated to 
rewriting rules 

Key tool: the rule-algebra formalism!
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On Stochastic Rewriting and Combinatorics

via Rule-Algebraic Methods*

Nicolas Behr
Université de Paris, CNRS, IRIF

F-75006, Paris, France
nicolas.behr@irif.fr

Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Compositionality of Rewriting Rules with Conditions
Nicolas Behr and Jean Krivine

Université de Paris, CNRS, IRIF, F-75006, Paris, France

We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule com-
position operations is encoding the non-deterministic sequential concurrent application
of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with applica-
tion conditions based upon M-adhesive categories. We uncover an intricate interplay
between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for con-
ditions, and thirdly the property of associativity of the composition of rules.

1 Introduction and relation to previous work

Graph rewriting has emerged as a powerful formalism to represent complex systems whose dy-
namics can be captured by a finite set of rules. The rule-based modeling approach, originally
introduced by V. Danos and C. Laneve in the early 2000’s [32–34], has developed into one of the
main frameworks for the study of biochemical reaction systems (in the form of the two main frame-
works Kappa [20, 29] and BioNetGen[18, 50]). The approach proposes to model protein-protein
interaction networks using graph rewriting models, in which proteins are the vertices of a graph
whose connected components denote molecular complexes. As formal methods are expending in
the molecular biology community, it is expected that large models describing signaling pathways
and self-assembling processes occurring in the cell will be commonplace in a near future.

While the algorithmic aspects of graph rewriting are well-studied, programming language ap-
proaches to modeling with graphs are to date still a comparatively underdeveloped topic. Contrary
to classical term rewriting, the notion of a match of a graph rewriting rule and its effects on a
term (a graph) is subject to various definitions, allowing more of less control over possible rewrites.
In addition, the mere nature of the graphs that are being rewritten impacts both the algorithmic
design and expressiveness of graph rewriting. Category theory is a practical toolkit for equipping
graphs with well-defined operational semantics. Double-Pushout (DPO) rewriting [27] is a pop-
ular technique, partly because it does not yield side effects when rules are applied (which makes
it amenable to static analysis for instance). However, when a graph rewriting rule entails node
deletion, DPO semantics will not allow a match of such a rule to trigger if the node that is deleted
is connected outside the domain of the match (which would yield side effect). This has limited
the practicality of DPO semantics in the context of biological modeling, where more permissive
techniques have been employed. Sesqui-Pushout (SqPO) rewriting [26] in particular is the tech-
nique that is used to rewrite Kappa graphs [29], one of the main graph rewriting formalisms for
biological models.

Quite orthogonal to the issue of defining rule matches and effects, having access to a fine-grained
control over rule triggering is a key issue when graph rewriting is used as a modeling language. To
this aim, graph rewriting rules have been equipped with application conditions [38, 47], which can
be seen as constraints that need to be checked “on the fly” when a rewrite rule is applied.

This paper presents a compositional variant of DPO and SqPO-type rewriting for rules with
conditions in a very general category-theoretical setting. From a mathematical perspective, while
Nicolas Behr: nicolas.behr@irif.fr, http://nicolasbehr.com, corresponding author; the work of N.B. was supported by a

Marie Sk≥odowska-Curie Individual fellowship (Grant Agreement No. 753750 – RaSiR)

Jean Krivine: jean.krivine@irif.fr, https://www.irif.fr/~jkrivine/homepage/Home.html
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Abstract. The Kappa biochemistry and the MØD organo-chemistry
frameworks are amongst the most intensely developed applications of
rewriting theoretical methods in the life sciences to date. A typical fea-
ture of these types of rewriting theories is the necessity to implement
certain structural constraints on the objects to be rewritten (a protein
is empirically found to have a certain signature of sites, a carbon atom
can form at most four bonds, . . . ). In this paper, we contribute to the
theoretical foundations of these types of rewriting theory a number of
conceptual and technical developments that permit to implement a uni-
versal theory of continuous-time Markov chains (CTMCs) for stochastic
rewriting systems. Our core mathematical concepts are a novel rule al-
gebra construction for the relevant setting of rewriting rules with condi-
tions, both in Double- and in Sesqui-Pushout semantics, augmented by a
suitable stochastic mechanics formalism extension that permits to derive
dynamical evolution equations for pattern-counting statistics.

Keywords: Double-Pushout rewriting · Sesqui-pushout rewriting · rule
algebra · stochastic mechanics · biochemistry · organic chemistry.

1 Motivation

One of the key applications that rewriting theory may be considered for in the
life sciences is the theory of continuous-time Markov chains (CTMCs) model-
ing complex systems. In fact, since Delbrück’s seminal work on autocatalytic
reaction systems in the 1940s [20], the mathematical theory of chemical reac-
tion systems has e↵ectively been formulated as a rewriting theory in disguise,
namely via the rule algebra of discrete graph rewriting [11]. In the present
paper, we provide the necessary technical constructions in order to consider

? An extended version of this paper containing additional technical appendices is avail-
able online [9].
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.

Compositionality of Rewriting Rules with Conditions
Nicolas Behr and Jean Krivine

Université de Paris, CNRS, IRIF, F-75006, Paris, France

We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule com-
position operations is encoding the non-deterministic sequential concurrent application
of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with applica-
tion conditions based upon M-adhesive categories. We uncover an intricate interplay
between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for con-
ditions, and thirdly the property of associativity of the composition of rules.

1 Introduction and relation to previous work

Graph rewriting has emerged as a powerful formalism to represent complex systems whose dy-
namics can be captured by a finite set of rules. The rule-based modeling approach, originally
introduced by V. Danos and C. Laneve in the early 2000’s [32–34], has developed into one of the
main frameworks for the study of biochemical reaction systems (in the form of the two main frame-
works Kappa [20, 29] and BioNetGen[18, 50]). The approach proposes to model protein-protein
interaction networks using graph rewriting models, in which proteins are the vertices of a graph
whose connected components denote molecular complexes. As formal methods are expending in
the molecular biology community, it is expected that large models describing signaling pathways
and self-assembling processes occurring in the cell will be commonplace in a near future.

While the algorithmic aspects of graph rewriting are well-studied, programming language ap-
proaches to modeling with graphs are to date still a comparatively underdeveloped topic. Contrary
to classical term rewriting, the notion of a match of a graph rewriting rule and its effects on a
term (a graph) is subject to various definitions, allowing more of less control over possible rewrites.
In addition, the mere nature of the graphs that are being rewritten impacts both the algorithmic
design and expressiveness of graph rewriting. Category theory is a practical toolkit for equipping
graphs with well-defined operational semantics. Double-Pushout (DPO) rewriting [27] is a pop-
ular technique, partly because it does not yield side effects when rules are applied (which makes
it amenable to static analysis for instance). However, when a graph rewriting rule entails node
deletion, DPO semantics will not allow a match of such a rule to trigger if the node that is deleted
is connected outside the domain of the match (which would yield side effect). This has limited
the practicality of DPO semantics in the context of biological modeling, where more permissive
techniques have been employed. Sesqui-Pushout (SqPO) rewriting [26] in particular is the tech-
nique that is used to rewrite Kappa graphs [29], one of the main graph rewriting formalisms for
biological models.

Quite orthogonal to the issue of defining rule matches and effects, having access to a fine-grained
control over rule triggering is a key issue when graph rewriting is used as a modeling language. To
this aim, graph rewriting rules have been equipped with application conditions [38, 47], which can
be seen as constraints that need to be checked “on the fly” when a rewrite rule is applied.

This paper presents a compositional variant of DPO and SqPO-type rewriting for rules with
conditions in a very general category-theoretical setting. From a mathematical perspective, while
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Abstract. The Kappa biochemistry and the MØD organo-chemistry
frameworks are amongst the most intensely developed applications of
rewriting theoretical methods in the life sciences to date. A typical fea-
ture of these types of rewriting theories is the necessity to implement
certain structural constraints on the objects to be rewritten (a protein
is empirically found to have a certain signature of sites, a carbon atom
can form at most four bonds, . . . ). In this paper, we contribute to the
theoretical foundations of these types of rewriting theory a number of
conceptual and technical developments that permit to implement a uni-
versal theory of continuous-time Markov chains (CTMCs) for stochastic
rewriting systems. Our core mathematical concepts are a novel rule al-
gebra construction for the relevant setting of rewriting rules with condi-
tions, both in Double- and in Sesqui-Pushout semantics, augmented by a
suitable stochastic mechanics formalism extension that permits to derive
dynamical evolution equations for pattern-counting statistics.
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1 Motivation

One of the key applications that rewriting theory may be considered for in the
life sciences is the theory of continuous-time Markov chains (CTMCs) model-
ing complex systems. In fact, since Delbrück’s seminal work on autocatalytic
reaction systems in the 1940s [20], the mathematical theory of chemical reac-
tion systems has e↵ectively been formulated as a rewriting theory in disguise,
namely via the rule algebra of discrete graph rewriting [11]. In the present
paper, we provide the necessary technical constructions in order to consider

? An extended version of this paper containing additional technical appendices is avail-
able online [9].
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-
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Compositionality of Rewriting Rules with Conditions
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We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule com-
position operations is encoding the non-deterministic sequential concurrent application
of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with applica-
tion conditions based upon M-adhesive categories. We uncover an intricate interplay
between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for con-
ditions, and thirdly the property of associativity of the composition of rules.

1 Introduction and relation to previous work

Graph rewriting has emerged as a powerful formalism to represent complex systems whose dy-
namics can be captured by a finite set of rules. The rule-based modeling approach, originally
introduced by V. Danos and C. Laneve in the early 2000’s [32–34], has developed into one of the
main frameworks for the study of biochemical reaction systems (in the form of the two main frame-
works Kappa [20, 29] and BioNetGen[18, 50]). The approach proposes to model protein-protein
interaction networks using graph rewriting models, in which proteins are the vertices of a graph
whose connected components denote molecular complexes. As formal methods are expending in
the molecular biology community, it is expected that large models describing signaling pathways
and self-assembling processes occurring in the cell will be commonplace in a near future.

While the algorithmic aspects of graph rewriting are well-studied, programming language ap-
proaches to modeling with graphs are to date still a comparatively underdeveloped topic. Contrary
to classical term rewriting, the notion of a match of a graph rewriting rule and its effects on a
term (a graph) is subject to various definitions, allowing more of less control over possible rewrites.
In addition, the mere nature of the graphs that are being rewritten impacts both the algorithmic
design and expressiveness of graph rewriting. Category theory is a practical toolkit for equipping
graphs with well-defined operational semantics. Double-Pushout (DPO) rewriting [27] is a pop-
ular technique, partly because it does not yield side effects when rules are applied (which makes
it amenable to static analysis for instance). However, when a graph rewriting rule entails node
deletion, DPO semantics will not allow a match of such a rule to trigger if the node that is deleted
is connected outside the domain of the match (which would yield side effect). This has limited
the practicality of DPO semantics in the context of biological modeling, where more permissive
techniques have been employed. Sesqui-Pushout (SqPO) rewriting [26] in particular is the tech-
nique that is used to rewrite Kappa graphs [29], one of the main graph rewriting formalisms for
biological models.

Quite orthogonal to the issue of defining rule matches and effects, having access to a fine-grained
control over rule triggering is a key issue when graph rewriting is used as a modeling language. To
this aim, graph rewriting rules have been equipped with application conditions [38, 47], which can
be seen as constraints that need to be checked “on the fly” when a rewrite rule is applied.

This paper presents a compositional variant of DPO and SqPO-type rewriting for rules with
conditions in a very general category-theoretical setting. From a mathematical perspective, while
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8 Place Aurélie Nemours, 75205 Paris Cedex 13, France
jean.krivine@irif.fr

Abstract. The Kappa biochemistry and the MØD organo-chemistry
frameworks are amongst the most intensely developed applications of
rewriting theoretical methods in the life sciences to date. A typical fea-
ture of these types of rewriting theories is the necessity to implement
certain structural constraints on the objects to be rewritten (a protein
is empirically found to have a certain signature of sites, a carbon atom
can form at most four bonds, . . . ). In this paper, we contribute to the
theoretical foundations of these types of rewriting theory a number of
conceptual and technical developments that permit to implement a uni-
versal theory of continuous-time Markov chains (CTMCs) for stochastic
rewriting systems. Our core mathematical concepts are a novel rule al-
gebra construction for the relevant setting of rewriting rules with condi-
tions, both in Double- and in Sesqui-Pushout semantics, augmented by a
suitable stochastic mechanics formalism extension that permits to derive
dynamical evolution equations for pattern-counting statistics.
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1 Motivation

One of the key applications that rewriting theory may be considered for in the
life sciences is the theory of continuous-time Markov chains (CTMCs) model-
ing complex systems. In fact, since Delbrück’s seminal work on autocatalytic
reaction systems in the 1940s [20], the mathematical theory of chemical reac-
tion systems has e↵ectively been formulated as a rewriting theory in disguise,
namely via the rule algebra of discrete graph rewriting [11]. In the present
paper, we provide the necessary technical constructions in order to consider

? An extended version of this paper containing additional technical appendices is avail-
able online [9].
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We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule com-
position operations is encoding the non-deterministic sequential concurrent application
of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with applica-
tion conditions based upon M-adhesive categories. We uncover an intricate interplay
between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for con-
ditions, and thirdly the property of associativity of the composition of rules.

1 Introduction and relation to previous work

Graph rewriting has emerged as a powerful formalism to represent complex systems whose dy-
namics can be captured by a finite set of rules. The rule-based modeling approach, originally
introduced by V. Danos and C. Laneve in the early 2000’s [32–34], has developed into one of the
main frameworks for the study of biochemical reaction systems (in the form of the two main frame-
works Kappa [20, 29] and BioNetGen[18, 50]). The approach proposes to model protein-protein
interaction networks using graph rewriting models, in which proteins are the vertices of a graph
whose connected components denote molecular complexes. As formal methods are expending in
the molecular biology community, it is expected that large models describing signaling pathways
and self-assembling processes occurring in the cell will be commonplace in a near future.

While the algorithmic aspects of graph rewriting are well-studied, programming language ap-
proaches to modeling with graphs are to date still a comparatively underdeveloped topic. Contrary
to classical term rewriting, the notion of a match of a graph rewriting rule and its effects on a
term (a graph) is subject to various definitions, allowing more of less control over possible rewrites.
In addition, the mere nature of the graphs that are being rewritten impacts both the algorithmic
design and expressiveness of graph rewriting. Category theory is a practical toolkit for equipping
graphs with well-defined operational semantics. Double-Pushout (DPO) rewriting [27] is a pop-
ular technique, partly because it does not yield side effects when rules are applied (which makes
it amenable to static analysis for instance). However, when a graph rewriting rule entails node
deletion, DPO semantics will not allow a match of such a rule to trigger if the node that is deleted
is connected outside the domain of the match (which would yield side effect). This has limited
the practicality of DPO semantics in the context of biological modeling, where more permissive
techniques have been employed. Sesqui-Pushout (SqPO) rewriting [26] in particular is the tech-
nique that is used to rewrite Kappa graphs [29], one of the main graph rewriting formalisms for
biological models.

Quite orthogonal to the issue of defining rule matches and effects, having access to a fine-grained
control over rule triggering is a key issue when graph rewriting is used as a modeling language. To
this aim, graph rewriting rules have been equipped with application conditions [38, 47], which can
be seen as constraints that need to be checked “on the fly” when a rewrite rule is applied.

This paper presents a compositional variant of DPO and SqPO-type rewriting for rules with
conditions in a very general category-theoretical setting. From a mathematical perspective, while
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
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We extend the notion of compositional associative rewriting as recently studied in
the rule algebra framework literature to the setting of rewriting rules with conditions.
Our methodology is category-theoretical in nature, where the definition of rule com-
position operations is encoding the non-deterministic sequential concurrent application
of rules in Double-Pushout (DPO) and Sesqui-Pushout (SqPO) rewriting with applica-
tion conditions based upon M-adhesive categories. We uncover an intricate interplay
between the category-theoretical concepts of conditions on rules and morphisms, the
compositionality and compatibility of certain shift and transport constructions for con-
ditions, and thirdly the property of associativity of the composition of rules.

1 Introduction and relation to previous work

Graph rewriting has emerged as a powerful formalism to represent complex systems whose dy-
namics can be captured by a finite set of rules. The rule-based modeling approach, originally
introduced by V. Danos and C. Laneve in the early 2000’s [32–34], has developed into one of the
main frameworks for the study of biochemical reaction systems (in the form of the two main frame-
works Kappa [20, 29] and BioNetGen[18, 50]). The approach proposes to model protein-protein
interaction networks using graph rewriting models, in which proteins are the vertices of a graph
whose connected components denote molecular complexes. As formal methods are expending in
the molecular biology community, it is expected that large models describing signaling pathways
and self-assembling processes occurring in the cell will be commonplace in a near future.

While the algorithmic aspects of graph rewriting are well-studied, programming language ap-
proaches to modeling with graphs are to date still a comparatively underdeveloped topic. Contrary
to classical term rewriting, the notion of a match of a graph rewriting rule and its effects on a
term (a graph) is subject to various definitions, allowing more of less control over possible rewrites.
In addition, the mere nature of the graphs that are being rewritten impacts both the algorithmic
design and expressiveness of graph rewriting. Category theory is a practical toolkit for equipping
graphs with well-defined operational semantics. Double-Pushout (DPO) rewriting [27] is a pop-
ular technique, partly because it does not yield side effects when rules are applied (which makes
it amenable to static analysis for instance). However, when a graph rewriting rule entails node
deletion, DPO semantics will not allow a match of such a rule to trigger if the node that is deleted
is connected outside the domain of the match (which would yield side effect). This has limited
the practicality of DPO semantics in the context of biological modeling, where more permissive
techniques have been employed. Sesqui-Pushout (SqPO) rewriting [26] in particular is the tech-
nique that is used to rewrite Kappa graphs [29], one of the main graph rewriting formalisms for
biological models.

Quite orthogonal to the issue of defining rule matches and effects, having access to a fine-grained
control over rule triggering is a key issue when graph rewriting is used as a modeling language. To
this aim, graph rewriting rules have been equipped with application conditions [38, 47], which can
be seen as constraints that need to be checked “on the fly” when a rewrite rule is applied.

This paper presents a compositional variant of DPO and SqPO-type rewriting for rules with
conditions in a very general category-theoretical setting. From a mathematical perspective, while
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Abstract. The Kappa biochemistry and the MØD organo-chemistry
frameworks are amongst the most intensely developed applications of
rewriting theoretical methods in the life sciences to date. A typical fea-
ture of these types of rewriting theories is the necessity to implement
certain structural constraints on the objects to be rewritten (a protein
is empirically found to have a certain signature of sites, a carbon atom
can form at most four bonds, . . . ). In this paper, we contribute to the
theoretical foundations of these types of rewriting theory a number of
conceptual and technical developments that permit to implement a uni-
versal theory of continuous-time Markov chains (CTMCs) for stochastic
rewriting systems. Our core mathematical concepts are a novel rule al-
gebra construction for the relevant setting of rewriting rules with condi-
tions, both in Double- and in Sesqui-Pushout semantics, augmented by a
suitable stochastic mechanics formalism extension that permits to derive
dynamical evolution equations for pattern-counting statistics.
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1 Motivation

One of the key applications that rewriting theory may be considered for in the
life sciences is the theory of continuous-time Markov chains (CTMCs) model-
ing complex systems. In fact, since Delbrück’s seminal work on autocatalytic
reaction systems in the 1940s [20], the mathematical theory of chemical reac-
tion systems has e↵ectively been formulated as a rewriting theory in disguise,
namely via the rule algebra of discrete graph rewriting [11]. In the present
paper, we provide the necessary technical constructions in order to consider

? An extended version of this paper containing additional technical appendices is avail-
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Université de Paris, INSERM U1284

8-10 Rue Charles V, 75004 Paris, France
nicolas.behr@cri-paris.org

2 Institut de Recherche en Informatique Fondamentale (IRIF)
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following property holds:
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pullbacks if and only if the 
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The basic prerequisites for category-theoretical rewriting theories
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• morphisms of  are natural transformations 

* *̂ *
*̂ F : *op → *,-

*̂ ϕ : F . G
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Example: presheaves
Definition: For  a (small) category, the category  of presheaves over  has 

• objects of  are functors  
• morphisms of  are natural transformations 

* *̂ *
*̂ F : *op → *,-

*̂ ϕ : F . G

Special case: (directed) multigraphs as , where .̂ . : V
s⇉
t

E

 a graph  is given by the data  (set of vertices),  (set of edges) 
and two morphisms  (source/target maps)
⇒ G G(V) G(E)

G(s), G(t) : G(E) → G(V)
 a graph homomorphism  is a natural transformation, i.e. 

 
 
 
                                                                                             commute

⇒ ϕ = (ϕV, ϕE) : G1 → G2

G1(E) G1(s) G1(V)

G2(E)
G2(s)

G2(V)

ϕ
V

ϕ
E

G1(E) G1(t) G1(V)

G2(E)
G2(t)

G2(V)
ϕ

V

ϕ
E
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Brief comments on abstract category-theoretical operations:

• pushout (PO) along monomorphisms in the category Set:

A

B C

D

PO Interpretation:
A ´ intersection of B and C in D
D ´ union of B and C along A

• pushout complement (POC) of D –â B –â A: a set C and monomorphisms
D –â C –â A such that the square ˝pABDCq is a pushout

• pullback (PB) along monomorphisms in the category Set:

A

B C

D

PB Interpretation: A ´ intersection of B and C in D

Pushouts implement “gluing” along partial overlaps
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Sources of constructions of adhesive categories

• Every topos (elementary or Grothendiek) is an adhesive category. 
 
 

• Categorical constructions that yield new adhesive categories: 
• cartesian product 
• slice and coslice 
• comma categories (and other functor category constructions) 
• …

S. Lack & P. Sobociński (2006). Toposes are adhesive. In Proceedings of the Third 
international conference on Graph Transformations (pp. 184-198). Springer-Verlag.
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Building upon the rule-algebraic stochastic mechanics framework, we present new results on the
relationship of stochastic rewriting systems described in terms of continuous-time Markov chains,
their embedded discrete-time Markov chains and certain types of generating function expressions in
combinatorics. We introduce a number of generating function techniques that permit a novel form
of static analysis for rewriting systems based upon marginalizing distributions over the states of the
rewriting systems via pattern-counting observables.

1 Introduction

An important aspect of the standard theory of continuous-time Markov chains (CTMCs) [23] concerns
the well-known fact that the CTMC semantics may be equivalently described via a pair of discrete-time
Markov chains (DTMCs), where the so-called embedded DTMC encodes the probabilities for each of the
possible transitions, and with the second DTMC encoding the jump-times for the transitions. This feature
permits to design algorithms for simulating CTMCs, for instance in the form of Gillespie’s stochastic
simulation algorithms for chemical reaction systems [20], but in particular also in several variations for
the simulation of stochastic rewriting systems, such as via the KaSim simulation engine of the Kappa
platform [13]. The main contribution of the present paper consists in uncovering a hitherto unknown
intimate relationship between three types of moment generating functions that are constructable from the
data that specifies a stochastic rewriting system, and for a chosen set of pattern count observables: those
of the CTMC itself, those of the embedded DTMC, and those of the (weighted) combinatorial species
generated by the rewriting rules.

2 Prerequisite: the rule algebra framework

The methodology developed in the present paper relies heavily upon the mathematical formalism intro-
duced in [2, 3, 9, 4, 7, 10], yet due to space restrictions, we will only provide some notations and essential
definitions here, inviting the interested readers to consult loc. cit. for the full technical details.

2.1 DPO- and SqPO-type compositional rewriting semantics

Throughout this paper, we will consider categorical rewriting theories over categories that satisfy the
following sets of properties (with DPO- and SqPO-semantics to be introduced below)1:

*The author would like to thank Paul-André Melliès and Noam Zeilberger for fruitful discussions and valuable feedback.
1We invite the readers to consult [6] or [7] for compact accounts of the relevant technical definitions of M -adhesive cate-

gories, pullbacks, pushouts, pushout complements, final pullback complements and their respective properties.
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Running example: planar rooted binary trees (PRBTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
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The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
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PRBF ^ c

(+)
PRBF

c
(�)
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)
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Running example: planar rooted binary trees (PRBTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n
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o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R
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I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
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ĜR :=
⇤

⇤ := Â
T2{I,L,R}
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⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
PRBF ^ c

(+)
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)

But: how to encode the structural properties of PRBTs?
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DefPUP[PVU. For an adhesive, extensive and finitary category C, cVUZ[YaPU[Z are recursively de-
fined as follows: let T : S ,! S0 be a monomorphism.

š T ✏ i`m2 — in words: “T Za[PZfPeZ [Oe cVUdP[PVU i`m2”

š for every mono � : S ,! Z and every condition +Z (over Z), T ✏ 9(�, +Z) iff there exists a
mono [ : Z ,! S0 such that T = [ � � and [ ✏ +Z

š for +, +0, +00 constraints,

¶ T ✏ ¬+ :, ¬(T ✏ +)
¶ T ✏ (+0 ^ +00) :, (T ✏ +0) ^ (T ✏ +00)

Constraints formalism for adhesive categories

DefPUP[PVU. An VbQec[ s 2 Q#D(C) iV defined Wo VaWiVf\ a cVUZ[YaPU[ +? (i.e. a condiWion foUmX-
laWed oYeU Whe PUP[PaS VbQec[ ? 2 Q#D(C)) iff (◆s : ? ,! s) ✏ +?.
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Running example: planar rooted binary trees (PBRTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
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ĜR :=
⇤

⇤ := Â
T2{I,L,R}
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T
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⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
PRBF ^ c

(+)
PRBF

c
(�)
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N2NPRBF

6 9(? ,! N) , NPRBF :=
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(41)
Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
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As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
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recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO
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):
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
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PRBF ^ c

(+)
PRBF

c
(�)
PRBF :=

^

N2NPRBF

6 9(? ,! N) , NPRBF :=
⇢

I

L
,

I

I
,

I

R
, LL , R R

�
[

[

T,T 02{I,L,R}

n
T T 0 , T T 0 , T T 0

o

c
(+)
PRBF := 8

�
? ,! L ,9

�
L ,! L R

��^
8
�
? ,! R ,9

�
R ,! L R

��

^ ^

T2{L,R}
8

0

@? ,! T ,

_

T 02{I,L,R}
9
✓

T ,! T

T 0

◆1

A

(41)
Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
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As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)

Running example: planar rooted binary trees (PBRTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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o
, T1 :=

⇢
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, T2 :=
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)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)
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As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
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PRBF ^ c

(+)
PRBF

c
(�)
PRBF :=

^

N2NPRBF

6 9(? ,! N) , NPRBF :=
⇢

I

L
,

I

I
,

I

R
, LL , R R

�
[

[

T,T 02{I,L,R}

n
T T 0 , T T 0 , T T 0

o

c
(+)
PRBF := 8

�
? ,! L ,9

�
L ,! L R

��^
8
�
? ,! R ,9

�
R ,! L R

��

^ ^

T2{L,R}
8

0

@? ,! T ,

_

T 02{I,L,R}
9
✓

T ,! T

T 0

◆1

A

(41)
Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=
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⌘���
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As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)

Running example: planar rooted binary trees (PBRTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
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↵
, . . . , 8t 2Tn : Ĝ |ti= Â
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��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=
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As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=
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As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
PRBF ^ c

(+)
PRBF

c
(�)
PRBF :=

^

N2NPRBF

6 9(? ,! N) , c
(+)
PRBF := 8

�
L ,! L R

�^
8
�

R ,! L R

�^ ^

T2{L,R}
T 02{I,L,R}

8
✓

T ,! T

T 0

◆

NPRBF :=
⇢

I

L
,

I

I
,

R

I
, LL , R R

�
[

[

T,T 02{I,L,R}

n
T T 0 , T T 0 , T T 0

o

(41)
Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)

Running example: planar rooted binary trees (PBRTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
PRBF ^ c

(+)
PRBF

c
(�)
PRBF :=

^

N2NPRBF

6 9(? ,! N) , NPRBF :=
⇢

I

L
,

I

I
,

I

R
, LL , R R

�
[

[

T,T 02{I,L,R}

n
T T 0 , T T 0 , T T 0

o

c
(+)
PRBF := 8

�
? ,! L ,9

�
L ,! L R

��^
8
�
? ,! R ,9

�
R ,! L R

��

^ ^

T2{L,R}
8

0

@? ,! T ,

_

T 02{I,L,R}
9
✓

T ,! T

T 0

◆1

A

(41)
Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of



Nicolas Behr, SOCS 2020, IRIF, December 11, 2020

N. Behr 11

One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
PRBF ^ c

(+)
PRBF

c
(�)
PRBF :=

^

N2NPRBF

6 9(? ,! N) , c
(+)
PRBF := 8

�
L ,! L R

�^
8
�

R ,! L R

�^ ^

T2{L,R}
T 02{I,L,R}

8
✓

T ,! T

T 0

◆

NPRBF :=
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of
PRBFs), with the natural hierarchy SPRBF ⇢ PPRBF ⇢ obj(prePRBF)⇠=:

PPRBF := {X 2 obj(prePRBF)⇠= | X ✏ c
(�)
PRBF} , SPRBF := {X 2 PPRBF | X ✏ c

(+)
PRBF} (42)

Running example: planar rooted binary trees (PBRTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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One of the most interesting use-cases of this construction is the situation where the set of observables
satisfies the modified polynomial jump-closure condition (PJC0) of (29) with respect to Ĝ (and thus by
extension also for d̂). Assuming once again the existence and finiteness of all moments, the variable
transformations wi ! lnxi then induce the following evolution equation:

∂
∂t P(t;x) = d̂(x,∂x)P(t;x) , P(t;x) := h|xÔ et d̂ |X0i , d̂(x,∂x) :=

⇣
eadlnx·Ô(d̂)

⌘���
Ô! ∂

∂x
(39)

As we will demonstrate in the next section, for suitable choices of Ĝ and observables, the above type
of evolution equation permits to statically analyze an induced DTMC that evolves not on the original
state space Ĉ, but instead on a state space indexed by the vectors N(X) of pattern counts (with Ni(X) :=
h| Ôi |Xi). The interest in such types of observable-based marginalization of the probability distribution
of the embedded DTMC is that typically the evolution over the full state space Ĉ would be entirely
infeasible to interpret (or even to compute), seeing that for instance in the case of the tree-based example
presented in the next section, the reachable state space even after just 100 applications of Ĝ contains
already more than 10217 states.

5 A prototypical example: planar rooted binary trees

Trees in all their sorts and varieties are amongst some of the best-studied combinatorial structures, yet
have not been considered in any detail from the viewpoint of graph rewriting theory. For the present
illustration, let us consider planar rooted binary trees (PRBTs) and disjoint unions thereof, which will
be referred to as planar rooted binary forests (PRBFs). We will encode PRBTs as typed directed graphs
that satisfy certain structural constraints. Concretely, let prePRBF (the “host category” for planar rooted
binary forests) be the adhesive category of directed multigraphs typed over the type-graph Tpbr f ,

prePRBF := FinGraph/TPRBF , TPRBF :=
RL

I

(40)

In close analogy to the fashion in which the data type of Kappa site-graphs [13] may be encoded as
recently described in [7], PRBFs may be defined as objects of prePRBF that satisfy the structural con-
straint cPRBF that is defined in terms of negative and positive constraints over the initial object ? (i.e. the
“empty object”) as follows:

cPRBF := c
(�)
PRBF ^ c

(+)
PRBF

c
(�)
PRBF :=

^

N2NPRBF

6 9(? ,! N) , NPRBF :=
⇢
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T 0
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Following yet again the tradition of the Kappa framework [13] (see also [16]), let us introduce the set
PPRBF of PRBF patterns and the set SPRBF of states (with the latter coinciding of course with the set of:H WKHQ GHILQH WKH VHW PS_"6 RI PRBF WH[[LYUZ DQG WKH VHW :S_"6 RI Z[H[LZ (ZLWK WKH ODWWHU

FRLQFLGLQJ RI FRXUVH ZLWK WKH VHW RI 35B)V):

PPRBF := {X 2 Q#D(WYLPRBF)⇠= | X ✏ +(�)
PRBF

} , :PRBF := {X 2 PPRBF | X ✏ +(+)
PRBF

}
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The central “workflow” of categorical rewriting theory

Fix an adhesive finitary extensive category C 
• Isomorphism classes of objects of C will model the configurations. 
• Isomorphism classes of spans of monomorphisms will model the 

transitions, also referred to as (linear) rewriting rules: 

Note: here, “isomorphism” refers to entry-wise isomorphisms of the spans that encode rules, i.e. not the 
standard notion of isomorphism of spans

r = (O r↼ I) ≡ (O o↩ K
i↪ I)
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for linear rules with conditions (DPO & SqPO)



Nicolas Behr, SOCS 2020, IRIF, December 11, 2020

The foundation: "compositional" rewriting theory 
for linear rules with conditions (DPO & SqPO)



Nicolas Behr, SOCS 2020, IRIF, December 11, 2020

The suitable notion of rules with conditions

+LÄUP[PVU �� /HW GBM(*) GHQRWH WKH FODVV RI �SPULHY� Y\SLZ ^P[O JVUKP[PVUZ� GHıQHG DV

GBM(*) := {(O o←− K i−→ I; +I) | o, i ∈M, +I ∈ +QM/(*)} . ���

O1 K1 I1

O2 K2 I2

!⇠= ⇠= ◆⇠= ���

:H GHıQH WZR UXOHV ZLWK FRQGLWLRQV _D = (`D, +AD) �D = R, k�
LX\P]HSLU[� GHQRWHG _k ∼ _R� Lĳ +AR ≡ +Ak DQG LI WKHUH H[LVW
LVRPRUSKLVPV ω,κ, ι ∈ BbQ(*) VXFK WKDW WKH GLDJUDP RQ WKH
ULJKW FRPPXWHV� :H GHQRWH E\ GBM(*)∼ WKH VHW RI HTXLYD�
OHQFH FODVVHV XQGHU ∼ RI UXOHV ZLWK FRQGLWLRQV�
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The suitable notion of rule applications
+LÄUP[PVU �� /HW ` = (P←↩ E ↪→ A) ∈ GBM(*) DQG +A ∈ +QM/(*) EH FRQFUHWH UHSUHVHQWDWLYHV RI
VRPH HTXLYDOHQFH FODVV _ ∈ GBM(*)∼� DQG OHW s, u ∈ Q#D(*) EH REMHFWV� 7KHQ D [`WL T KPYLJ[
KLYP]H[PVU LV GHıQHG DV D FRPPXWDWLYH GLDJUDP VXFK DV EHORZ ULJKW� ZKHUH DOO PRUSKLVP DUH LQ
M �DQG ZLWK WKH OHIW UHSUHVHQWDWLRQ D VKRUWKDQG QRWDWLRQ�

O I

Y X

m⇤ m

r

T :=

O K I

Y K X

m⇤ k(B) (A) m . ���

ZLWK WKH IROORZLQJ SLHFHV RI LQIRUPDWLRQ UHTXLUHG UHODWLYH WR WKH W\SH�

�� T = +76� JLYHQ (K : A ↪→ s) ∈ M� K LV D +76�HKTPZZPISL TH[JO VM _ PU[V s�
GHQRWHG K ∈ JDPO

_ (s)� LI K ! +A DQG (�) LV FRQVWUXFWDEOH DV D W\ZOV\[ JVTWSLTLU[� LQ
ZKLFK FDVH (") LV FRQVWUXFWHG DV D W\ZOV\[�

�� T = :X76� JLYHQ (K : A ↪→ s) ∈ M� K LV D :X76�HKTPZZPISL TH[JO VM _ PU[V s�
GHQRWHG K ∈ JSqPO

_ (s)� LI K ! +A� LQ ZKLFK FDVH (�) LV FRQVWUXFWHG DV D ÄUHS W\SSIHJR
JVTWSLTLU[ DQG (") DV D W\ZOV\[�

�� T = +76†� JLYHQ MXVW WKH ŗSODLQ UXOHŘ ` DQG (K∗ : P ↪→ u) ∈M� K∗ LV D+76†�HKTPZZPISL
TH[JO VM ` PU[V s� GHQRWHG K ∈ JDPO†

` (u)� LI (") LV FRQVWUXFWDEOH DV D W\ZOV\[ JVT�
WSLTLU[� LQ ZKLFK FDVH (") LV FRQVWUXFWHG DV D W\ZOV\[�

)RU W\SHV T ∈ {.SP, a[SP}� ZH ZLOO VRPHWLPHV HPSOR\ WKH QRWDWLRQ _K(s) IRU WKH REMHFW u�

+LÄUP[PVU �� /HW ` = (P←↩ E ↪→ A) ∈ GBM(*) DQG +A ∈ +QM/(*) EH FRQFUHWH UHSUHVHQWDWLYHV RI
VRPH HTXLYDOHQFH FODVV _ ∈ GBM(*)∼� DQG OHW s, u ∈ Q#D(*) EH REMHFWV� 7KHQ D [`WL T KPYLJ[
KLYP]H[PVU LV GHıQHG DV D FRPPXWDWLYH GLDJUDP VXFK DV EHORZ ULJKW� ZKHUH DOO PRUSKLVP DUH LQ
M �DQG ZLWK WKH OHIW UHSUHVHQWDWLRQ D VKRUWKDQG QRWDWLRQ�

O I

Y X

m⇤ m

r

T :=

O K I

Y K X

m⇤ k(B) (A) m . ���

ZLWK WKH IROORZLQJ SLHFHV RI LQIRUPDWLRQ UHTXLUHG UHODWLYH WR WKH W\SH�

�� T = +76� JLYHQ (K : A ↪→ s) ∈ M� K LV D +76�HKTPZZPISL TH[JO VM _ PU[V s�
GHQRWHG K ∈ JDPO

_ (s)� LI K ! +A DQG (�) LV FRQVWUXFWDEOH DV D W\ZOV\[ JVTWSLTLU[� LQ
ZKLFK FDVH (") LV FRQVWUXFWHG DV D W\ZOV\[�

�� T = :X76� JLYHQ (K : A ↪→ s) ∈ M� K LV D :X76�HKTPZZPISL TH[JO VM _ PU[V s�
GHQRWHG K ∈ JSqPO

_ (s)� LI K ! +A� LQ ZKLFK FDVH (�) LV FRQVWUXFWHG DV D ÄUHS W\SSIHJR
JVTWSLTLU[ DQG (") DV D W\ZOV\[�

�� T = +76†� JLYHQ MXVW WKH ŗSODLQ UXOHŘ ` DQG (K∗ : P ↪→ u) ∈M� K∗ LV D+76†�HKTPZZPISL
TH[JO VM ` PU[V s� GHQRWHG K ∈ JDPO†

` (u)� LI (") LV FRQVWUXFWDEOH DV D W\ZOV\[ JVT�
WSLTLU[� LQ ZKLFK FDVH (") LV FRQVWUXFWHG DV D W\ZOV\[�

)RU W\SHV T ∈ {.SP, a[SP}� ZH ZLOO VRPHWLPHV HPSOR\ WKH QRWDWLRQ _K(s) IRU WKH REMHFW u�
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The suitable notion of rule compositions
+LÄUP[PVU �� /HW _R, _k ∈ GBM(*)∼ EH WZR HTXLYDOHQFH FODVVHV RI UXOHV ZLWK FRQGLWLRQV� DQG OHW
`D ∈ GBM(*) DQG +AD EH FRQFUHWH UHSUHVHQWDWLYHV RI _D �IRU D = R, k�� )RU T ∈ {.SP, a[SP}� DQ M�
VSDQ µ = (Ak ←↩ JkR ↪→ PR) �L�H� ZLWK (JkR ↪→ PR), (JkR ↪→ Ak) ∈M� LV D T�HKTPZZPISLTH[JO
VM _k PU[V _R LI WKH GLDJUDP EHORZ LV FRQVWUXFWDEOH �ZLWK LkR FRQVWUXFWHG E\ WDNLQJ SXVKRXW�

O2 I2 M21 O1 I1

O21 N21 I21

r2

T PO DPO
†

r1

���

DQG LI +AkR $n≡ 7�Hb2� +HUH� WKH FRQGLWLRQ +AkR LV FRPSXWHG DV

+I21 := a?B7i(I1 ↪→ I21, +I1) ∧ h`�Mb(N21 ↼ I21, a?B7i(I2 ↪→ N21, +I2)) . ���

,Q WKLV FDVH� ZH GHıQH WKH [`WL T JVTWVZP[PVU VM _k ^P[O _R HSVUN µ� GHQRWHG _kµ$T_R� DV

R2
µ$TR1 := [(O21 ↼ I21; +I21)]∼ , ���

ZKHUH (PkR ↼ AkR) := (PkR ↼ LkR) ◦ (LkR ↼ AkR) �ZLWK ◦ WKH ZWHU JVTWVZP[PVU RSHUDWLRQ��
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Physics insight: the rule algebra formalism
⇣

O
r

(�� I

⌘
�
⇣

O
r

(�� I

⌘

a rule a basis vector 
of a vector space      

O2 I2 O1 I1

O21 N21 I21

r2 µ r1

r
0
1

r
0
2

r2

µJr1:=r
0
2
�r

0
1

�(r2) ⇤R �(r1) :=

X

µ2Mr2
(r1)

�
⇣

r2

µ
J r1

⌘
Definition:  the rule algebra product                                    is defined via

“sum over ways to compose the rules”

⇤R : R⇥R ! R

(R, ⇤R)
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 a new fundamental tool in rewriting theory, combinatorics  
     and concurrency theory

⇒

The rule algebra               is an associative unital algebra, 
 with unit element                 .

(R, ⇤R)

�(? ( ?)

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem

Physics insight: the rule algebra formalism

�(r2) ⇤R �(r1) :=

X

µ2Mr2
(r1)

�
⇣

r2

µ
J r1

⌘
Definition:  the rule algebra product                                    is defined via

“sum over ways to compose the rules”

⇤R : R⇥R ! R
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Mathematics of chemical reactions
Example: 2X

↵
(�� X (↵ 2 R>0)

x̂(x
n
) := x

n+1
, @x(x

n
) :=

(
0 if n = 0

n · xn�1 if n > 0
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Mathematics of chemical reactions
Example: 2X

↵
(�� X (↵ 2 R>0)

12 pn(t) := Pr(#X = n at time t) = ?
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n
) := x

n+1
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n
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Mathematics of chemical reactions
Example: 2X

↵
(�� X (↵ 2 R>0)

12 pn(t) := Pr(#X = n at time t) = ?

Max Delbrück (1906-1981) 
1969 Nobel Prize laureate 
(medicine and physiology)

P(t; x) :=

X

n�0

pn(t) x
nDelbrück (1940):

@t P(t; x) =
⇥
↵
�
x̂

2@x � x̂@x

�⇤
P(t; x)

a linear operator…

x̂(x
n
) := x

n+1
, @x(x

n
) :=

(
0 if n = 0

n · xn�1 if n > 0
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Example:                                        (here: configuration = iso-class of graph)   |ni := |• ... •i
n vertices

  analogous concept for rewriting theory: ⇒
                              — basis vector (of a vector space of configurations     , 

                                                          e.g. graphs, trees, molecules, ….)  
Ĉ|Xi

Rule algebra framework (Part II)
Observation:        — basis vector (of the vector space of polynomials in x)x

n

Key step:  from rules to linear operators on                       Ĉ

O I

rm(X) X

r

m⇢
�
�(r)

�
|Xi :=

X

m2Mr(X)

|rm(X)i

“sum over all ways to apply r to X” 
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Rule algebra framework (Part II) ⇢
�
�(r)

�
|Xi :=

X

m2Mr(X)

|rm(X)i

Theorem                            

                          is a representation of the rule algebra              , i.e.⇢ : R ! End
�
Ĉ
�

(R, ⇤R)

⇢
�
�(r2)

�
⇢
�
�(r1)

�
|Xi = ⇢

�
�(r2) ⇤R �(r1)

�
|Xi

LiCS 2016, CSL 2018, GCM 2019, LMCS 2020, ICGT 2020Theorem



Nicolas Behr, SOCS 2020, IRIF, December 11, 2020

Rule algebra framework (Part II)

n vertices
|ni := |• ... •i $ xn
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�(• ( ?)
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Defining combinatorial structures via generators
DefPUP[PVU 4. CRQVLGHU D UHZULWLQJ V\VWHP RYHU VRPH VXLWDEOH FDWHJRU\ C WKDW FRQVLVWV RI D
fPUP[e Ze[ Vf Y\SeZ ^P[h cVUdP[PVUZ _R, ... , _M 2 GBM(C). FRU VRPH FKRLFH RI SDUDPHWHUV
�R, ... , �M 2 R, GHILQH D SPUeaY VWeYa[VY

Ĝ :=
nX

j=1

�j⇢(�(Rj)) . (7)

NV[e: �: KDV D QDWXUDO LQWHUSUHWDWLRQ DV D OLQHDU RSHUDWRU WKDW HQFRGHV ¸aWWSPca[PVU Vf [he Y\SeZ
_R, ... , _M PU aSS WVZZPbSe ^a`Z, aUd ^ePgh[ed b` [he WaYaTe[eYZ �R, ... , �M¹, L.H. RQH PD\
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S
(n)

Ĝ
, S

(n)

Ĝ
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(
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+HUH, {)(B)}B>y GHQRWHV WKH YeachabPSP[` YeSa[PVU RQ Q#D(C)⇥k
⇠= ZLWK UHVSHFW WR WKH PUP[PaS cVU-

fPg\Ya[PVU sy 2 Q#D(C)⇠= DQG WKH Y\Se-Ze[ {_D}M
?=R XVHG WR GHILQH �:.
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Defining combinatorial structures via generators
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Ĝ :=
nX

j=1

�j⇢(�(Rj)) . (7)

NV[e: �: KDV D QDWXUDO LQWHUSUHWDWLRQ DV D OLQHDU RSHUDWRU WKDW HQFRGHV ¸aWWSPca[PVU Vf [he Y\SeZ
_R, ... , _M PU aSS WVZZPbSe ^a`Z, aUd ^ePgh[ed b` [he WaYaTe[eYZ �R, ... , �M¹, L.H. RQH PD\
YLHZ �: DV WKH (ZHLJKWHG) geUeYa[VY RI D (FRXQWDEOH) Ze[ Vf Z[Y\c[\YeZ a�:,

S
Ĝ
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Running example: planar rooted binary trees (PRBTs)

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

Notational convention:

Running example: planar rooted binary trees (PRBTs)
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The Rémy uniform generator in the rule-algebra formalism

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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, T2 :=
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

Notational convention:

Running example: planar rooted binary trees (PRBTs)
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The Rémy uniform generator in the rule-algebra formalism
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

Notational convention:

Running example: planar rooted binary trees (PRBTs)
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The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example
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From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO
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):
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Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
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↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
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In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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DLMPUP[PVU 5. LHW T 2 {.SP, a[SP} GHQRWH WKH UHZULWLQJ VHPDQWLFV XWLOL]HG. 7KHQ Wa[[LYU
cV\U[ VbZLY]abSLZ DUH GHILQHG DV IROORZV:

ÔP,q;+P
:= ⇢DPO

C

⇣
�
⇣

P
q � Q

q�! P; +P

⌘⌘
, ÔP;+P

:= ⇢SqPO

C

⇣
�
⇣

P
idP �� P

idP��! P; +P

⌘⌘
(9)

7R EHWWHU XQGHUVWDQG WKH PHDQLQJ RI WKH DERYH GHILQLWLRQV, LW LV LPSRUWDQW WR QRWH WKH VR-FDOOHG
Q\TW-cSVZ\YL WYVWLY[PLZ RI DPO- DQG STPO-W\SHV, UHVSHFWLYHO\:

8_ =
⇣

P Q � E B�! A, +A
⌘
2 GBM(C) : h| ⇢T

C(�(_)) = h| �OT(�(_))
�O.SP(�(_)) := �PA,F;+A , �Oa[SP(�(_)) := �PA;+A , h| : �C! R : |si 7! h |si := RR .

(10)

IQ RWKHU ZRUGV, �PA,F;+A DQG �PA;+A SHUPLW WR cV\U[ WKH QXPEHU RI PDWFKHV RI WKH UHZULWLQJ UXOH
_ = (P Q � E B�! A, +A) LQ DPO- DQG STPO-VHPDQWLFV, UHVSHFWLYHO\. MRUH H[SOLFLWO\, ZH ILQG WKDW

h| ÔP,q;+I
|X i = |MDPO

(P
q �Q

q�!P;+I)
(X )| , h| ÔP;+I

|X i = |MSqPO

(P
idP ��P

idP��!P;+I)
(X )| . (11)

Counting patterns in combinatorial structures
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, ÔP;+P

:= ⇢SqPO

C

⇣
�
⇣

P
idP �� P

idP��! P; +P

⌘⌘
(9)

7R EHWWHU XQGHUVWDQG WKH PHDQLQJ RI WKH DERYH GHILQLWLRQV, LW LV LPSRUWDQW WR QRWH WKH VR-FDOOHG
Q\TW-cSVZ\YL WYVWLY[PLZ RI DPO- DQG STPO-W\SHV, UHVSHFWLYHO\:

8_ =
⇣

P Q � E B�! A, +A
⌘
2 GBM(C) : h| ⇢T

C(�(_)) = h| �OT(�(_))
�O.SP(�(_)) := �PA,F;+A , �Oa[SP(�(_)) := �PA;+A , h| : �C! R : |si 7! h |si := RR .

(10)

IQ RWKHU ZRUGV, �PA,F;+A DQG �PA;+A SHUPLW WR cV\U[ WKH QXPEHU RI PDWFKHV RI WKH UHZULWLQJ UXOH
_ = (P Q � E B�! A, +A) LQ DPO- DQG STPO-VHPDQWLFV, UHVSHFWLYHO\. MRUH H[SOLFLWO\, ZH ILQG WKDW
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Counting patterns in combinatorial structures

E_aTWSL 1. 7KH VLPSOHVW W\SH RI REVHUYDEOHV HQFRXQWHUHG LQ SUDFWLFH DUH WKH ¸WSaPU¹ Wa[[LYU-
cV\U[PUN VbZLY]abSLZ �PS = �PS,B/S;i`m2 = �PS;i`m2, ZLWK W\SLFDO H[DPSOHV LQFOXGLQJ

š �P• (FRXQWLQJ ]LY[PcLZ),

š �P• • (FRXQWLQJ WaPYZ VM ]LY[PcLZ), DQG

š �P•�• (FRXQWLQJ \UdPYLc[Ld LdNLZ).

MRUH JHQHUDOO\, IRU H[DPSOH LQ D3O UHZULWLQJ WKH YDULDQW �P?,!•,i`m2 HIIHFWLYHO\ FRXQWV ]LY[PcLZ
[Oa[ aYL UV[ SPURLd [V aU` V[OLY ]LY[PcLZ YLD LQFLGHQW HGJHV, ZKLOH LQ ERWK D3O- DQG 6T3O-
UHZULWLQJ WKH OLQHDU RSHUDWRU

Ô• •,!• •; 69(• •,!•�•) = Ô• •; 69(• •,!•�•)

FRXQWV WaPYZ VM ]LY[PcLZ UV[ SPURLd b` aU LdNL.
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A rule-algebraic generating-functionology

DeMPUP[PVU 6. LHW �: EH D OLQHDU RSHUDWRU (WKH NeUeYa[VY), OHW �PR, ... , �PK EH D FKRLFH RI (ILQLWHO\
PDQ\) Wa[[eYU VbZeY]abSeZ, DQG OHW |syi 2 �C GHQRWH WKH PUP[PaS Z[a[e. TKHQ WKH e_WVUeU[PaS
TVTeU[-NeUeYa[PUN M\Uc[PVU (EMGF) G(�;!) LV GHILQHG DV

G(�;!) := h| e!·Ô
e
�Ĝ |X0i (12)

HHUH, ZH HPSOR\HG WKH VKRUWKDQG QRWDWLRQ ! · �P :=
PK

D=R !D �PD, DQG � DV ZHOO DV !R, ... ,!K DUH
MVYTaS ]aYPabSeZ.

š SLQFH ZH DVVXPH sy WR EH D MPUP[e VbQec[, FOHDUO\ HDFK RI WKH VHWV a(M)
�: LV RI ILQLWH FDUGLQDOLW\.

š TKH FRHIILFLHQWV ;M = h| �:M |syi DUH HYLGHQWO\ RI ILQLWH YDOXH DV ZHOO, ZKLFK LQ VXPPDU\
SHUPLWV WKH IROORZLQJ YeWaY[P[PVU RI WKH IRUPDO SRZHU VHULHV G(�; y):

G(�; 0) =
X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X ) , gn(X ) := hX | Ĝn |X0i (13)

CRQVHTXHQWO\, WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH cVTbPUa[VYPaS Z[Y\c[\YeZ

cVU[aPUed PU [Oe M-[O NeUeYa[PVU, ZLWK ;M(s) WKH^ePNO[ RI D FRQILJXUDWLRQ s LQ WKH M-WK
JHQHUDWLRQ.

š FRU JHQHULF YDOXHV RI !, G(�;!) HYDOXDWHV DV IROORZV:

G(�;!) =
X

n�0

�n

n! h| e
!·Ô

Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ

gn(X )e!·N(X) , Ni(X ) := h| Ôi |X i .

(14)
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CRQVHTXHQWO\, WKH FRQILJXUDWLRQV s 2 a(M)
�: PD\ EH VHHQ DV WKH cVTbPUa[VYPaS Z[Y\c[\YeZ

cVU[aPUed PU [Oe M-[O NeUeYa[PVU, ZLWK ;M(s) WKH^ePNO[ RI D FRQILJXUDWLRQ s LQ WKH M-WK
JHQHUDWLRQ.

š FRU JHQHULF YDOXHV RI !, G(�;!) HYDOXDWHV DV IROORZV:

G(�;!) =
X

n�0

�n

n! h| e
!·Ô
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Ĝ
n |X0i =

X

n�0

�n

n!

X

X2S
(n)

Ĝ
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Combinatorial evolution equations
7KH MVYTaS EMGF e]VS\[PVU eX\a[PVU IRU G(�;!) UHDGV DV IROORZV:

@
@�G(�;!) = h|

⇣
e

ad!·Ô Ĝ

⌘
e
!·Ô

e
�Ĝ |X0i (adA(B) := AB � BA) (15)

ASSO\LQJ WKH YHUVLRQ RI WKH Q\TW-cSVZ\Ye [OeVYeT DSSURSULDWH IRU WKH FKRVHQ UHZULWLQJ VHPDQ-
WLFV (D32 RU 6T32), WKH DERYH IRUPDO HYROXWLRQ HTXDWLRQ PD\ EH FRQYHUWHG LQWR D SURSHU e]VS\-
[PVU eX\a[PVU VU MVYTaS WV^eY ZeYPeZ LI WKH IROORZLQJ WVS`UVTPaS Q\TW-cSVZ\Ye KROGV:

(SC*0) 8q 2 Z�0 : 9N(n) 2 Z
m

�0, �q(!, k) 2 R : h| ad
� q

!·Ô(Ĝ) =

N(q)X

k=0

�k(!, k) h| Ô
k (16)

II D JLYHQ VHW RI REVHUYDEOHV VDWLVILHV (SC*0), WKH MVYTaS e]VS\[PVU eX\a[PVU (12) IRU WKH E0GF
G(�;!) PD\ EH UHILQHG LQWR

@
@�G(�;!) = G(!, @!)G(�;!) , G(!, @!) =

⇣
h| ead!·Ô (Ĝ)

⌘���
Ô 7!@!

. (17)
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The Rémy uniform generator in the rule-algebra formalism

12 On Stochastic Rewriting and Combinatorics

The importance of this distinction between patterns and states is that in general one may define rules
over patterns, while states will be the types of structures over which we will study CTMC, DTMC or
combinatorial constructions. It is well-known [16] that by virtue of the properties of negative application
conditions, for every M -morphism P0 ,! P where P is a pattern, P0 is a pattern as well.

We may finally define planar rooted binary trees as elements of SPRBF that are in addition connected
graphs. If we let Tn denote the set of PRBTs with (n+1) leaves, we thus find for example

T0 :=
n

I

o
, T1 :=

⇢
L R

I

�
, T2 :=

(
L R

L R

I

,

L R

L R

I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆

ĜR :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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o
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�
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I
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I

)
, . . . (43)

From hereon, we will simplify our graphical notations via omitting the vertices when drawing PRBTs,
the direction of edges and also the I, L and R labels where possible, since the type of the edges may be
inferred from the chosen “standard orientation” for the PRBT depictions:

⌘ I , ⌘ L ⌘ R (44)

For illustration of the computational framework put forward in the present paper, we will construct
and analyze PRBTs via the so-called Rémy uniform generator [24], starting from the root-only PRBT
| 2T0. The generator may be encoded in the present formalism as follows (where we let r := rSqPO

prePRBF
):

Ĝ := ĜL + ĜR , ĜL :=
⇤

⇤ := Â
T2{I,L,R}

r
✓

d
✓

L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆
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r
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L R

T
 - ,! T ; Shift

⇣
? ,! T ,cPBRT

⌘◆◆ (45)

Here, in the specification of the rewriting rules, we have highlighted the vertices that are preserved
by the rules (as black vertices in the compressed notation, and in blue in the explicit notation for better
readability). The application conditions for the rules are simply suitable shifts of the structural constraints
cPBRT to the input interfaces of the rules; this is because while one would a priori also need to consider a
contribution to the application conditions that ensures satisfaction of cPBRT after application of the rules
(i.e. technically applying Trans to the Shift of cPBRT from ? to the output interfaces), one may compute
that the resulting conditions are subsumed by the ones explicitly mentioned in (45).

As a first consistency check, we verify that Ĝ is a uniform generator, in the sense that

Ĝ | |i= Â
t2T1

2! |ti , 8t 2T1 : Ĝ |ti= Â
t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â

t 02Tn+1

(n+2)!
��t 0
↵
. (46)

In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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t 02T2

3!
��t 0
↵
, . . . , 8t 2Tn : Ĝ |ti= Â
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In other words, starting from an arbitrary tree t 2 Tn in “generation” n, applying Ĝ yields a uniform
distribution over all trees in “generation” n+1, all with weight (n+2)!.

The core computational strategy put forward in our rule-algebraic framework consists in searching
for polynomially jump-closed observable sets and in computing the commutators that occur in the various
forms of evolution equations. We will focus here on the simplest form of SqPO-type pattern counting
observables, namely those of the form ÔP := ÔP;true (cf. (13)). Since we will be exclusively interested in
evaluating the action of Ĝ and of the observables on PRBTs states, our computations may be simplified
to constraint-preserving semantics in the sense of [21]. Under this simplified semantics, the application
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conditions in the rules of Ĝ are equivalent to true, whence in computing SqPO-type rule compositions
for the commutators, the problem simplifies drastically to the following one: a partial overlap between
the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF ).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
consists just of the observable ÔE that “counts” edges in the trees regardless of their type:

ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T  - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:

(i) [ÔE , Ĝ] = 2Ĝ , (ii) h| Ĝ = 2h| ÔE . (48)

In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
rule compositions:

[ÔE , Ĝ] =

"
+ + ,

⇤
⇤ +

⇤
⇤

#
=

⇤
⇤ +

⇤
⇤ +

⇤
⇤ +

⇤
⇤ + . . .� . . .= 2Ĝ . (49)

This result is sufficient to perform our first moment-EGF computation:

G (l ;e) := h|eeÔE el Ĝ | |i
∂

∂l G (l ;e) = h|
⇣

eadeÔE (Ĝ
⌘

eeÔE el Ĝ | |i= Â
q�0

1
q! h|

⇣
ad�q

eÔE
(Ĝ)

⌘
eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

( ∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l ) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.
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possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

N. Behr 13
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ÔE := ⇤ := Â
T2{I,L,R}

r
⇣

d
⇣

T  - T ,! T ; true
⌘⌘

(47)

According to SqPO-type jump-closure and under constraint-preserving semantics (i.e. when acting on
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eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
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eÔE
(Ĝ)
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Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
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The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.
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the input or output of a rule in Ĝ with an output or input of another rule R̂ with application condition true

is an admissible match if and only if it is an admissible match of the “plain rules”, and if in addition the
gluing N21 of the interfaces as in (4) satisfies the pattern constraints (i.e. if N21 ✏ c

(�)
PRBF ).

Let us begin with the simplest non-trivial polynomial jump-closed set of observables for Ĝ, which
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PRBTs), we may verify that the set {ÔE} is indeed polynomially jump-closed with respect to Ĝ:
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In order to gain some intuitions for the computation technique for commutators, we present below some
details on (i), where . . . denote contributions that drop out of the commutator due to sequential indepen-
dence, and where we have highlighted the rules of Ĝ in orange to show the structure of the individual
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eÔE
(Ĝ)
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=
�
Â
q�0

(2e)q

q!
�
h| ĜeeÔE el Ĝ | |i= 2e2e h| ÔEeeÔE el Ĝ | |i (via (48))

(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

( ∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
) G (l ;e) = 1p

e�2e�4l = Â
n�0

l n

n!

⇣
(2n)!

n! ee(2n+1)
⌘
. (51)

Unsurprisingly, the final result for G (l ;e) expresses that all PRBTs in “generation” n have the same
overall number of edges (i.e. 2n+1), and we invite the readers to verify via explicitly computing gn :=
h| Ĝn | |i for small values of n that gn = (2n)!/n!, which is obtained alternatively via specializing G (l ;e)
to e = 0 (with G (l ) := G (l ;0) = Ân�0

l
n! gn).

The real test of utility of the rule-algebraic methods is of course whether or not it is possible to
compute evolution equations for more intricate observables , since in the case of ÔE it would have been
possible to derive the evolution equations and the moment EGF via heuristics. To this end, it will prove
useful to introduce some auxiliary results to facilitate dealing with nested commutator equations.

Running example: planar rooted binary trees (PRBTs)



Nicolas Behr, SOCS 2020, IRIF, December 11, 2020

N. Behr 13
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consists just of the observable ÔE that “counts” edges in the trees regardless of their type:
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[ÔE , Ĝ] =
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eÔE
(Ĝ)
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eeÔE el Ĝ | |i (via (28))

=
�
Â
q�0

(2e)q

q!
�
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(50)

We have thus derived an evolution equation that is solvable e.g. via semi-linear normal-ordering [4]:

( ∂
∂l G (l ;e) = 2e2e ∂

∂e G (l ;e)

G (0;e) = h|eeÔE | |i= ee
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⌘
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14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)

Running example: planar rooted binary trees (PRBTs)
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Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics
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⇣
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While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
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closure. Due to the complexity of the computations, we present here only the final results:

[ÔP2, Ĝ] =
⇤

⇤
+

⇤

L +
⇤

L �
⇤

L �
⇤

L R̂P30 :=

⇤

L

[ÔP3, Ĝ] =

⇤

L

+

⇤

L +

⇤
⇤

+

⇤

L

�

⇤

L �

⇤

L

�

⇤

L � R̂P30

[ÔP2, [ÔP2, Ĝ]] = [ÔP2, Ĝ] , [ÔP2, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+ R̂P3

[ÔP3, [ÔP3, Ĝ]] = [ÔP3, Ĝ]+2R̂P30 , [ÔP2, R̂P30 ] = 0 , [ÔP3, R̂P30 ] =�R̂P30

h| [ÔP2, Ĝ] = h|(3ÔP1 �2ÔP2) , h| [ÔP3, Ĝ] = h|(4ÔP2 �3ÔP3) , h| R̂P30 = h| ÔP3

(56)

Summarizing all commutator results thus far, we may conclude that the observables {ÔE , ÔP1, ÔP2, ÔP3}
are polynomially jump-closed with respect to Ĝ, with the closure involving up to triple commutators. We
may then formulate the following moment-EGF evolution equation (with w := (e,g,µ,n)):

G (l ;w) := h|ew·Ôel Ĝ | |i , w · Ô := eÔE + gÔP1 +µÔP2 +nÔP3 (57a)

∂
∂l G (l ;w) = h|

⇣
eadw·Ô(Ĝ)

⌘
ew·Ôel Ĝ | |i (⇤)

= h|
⇣

eadnÔP3

⇣
eadµÔP2

⇣
eadeÔE+gÔP1 (Ĝ)

⌘⌘⌘
ew·Ôel Ĝ | |i (57b)

= e2e+g h|
⇣

eadnÔP3

⇣
eadµÔP2 (Ĝ)

⌘⌘
ew·Ôel Ĝ | |i (57c)

= e2e+g h|
⇣

eadnÔP3
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

�⌘
ew·Ôel Ĝ | |i (57d)

= e2e+g h|
�
Ĝ+(eµ �1)[ÔP2, Ĝ]

+eµ(en �1)[ÔP3, Ĝ]+ (en �1)(eµ � e�n)R̂P30
�
ew·Ôel Ĝ | |i

(57e)

= e2e+g h|
�
2ÔE +3(eµ �1)ÔP1 +(4eµ+n �6eµ +2)ÔP2

+(3eµ + e�n �3eµ+n �1)ÔP3
�
ew·Ôel Ĝ | |i

(57f)

= e2e+g h|
�
2 ∂

∂e +3(eµ �1) ∂
∂g +(4eµ+n �6eµ +2) ∂

∂ µ
+(3eµ + e�n �3eµ+n �1) ∂

∂n
�
ew·Ôel Ĝ | |i

(57g)

Here, in the step marked (⇤), we took advantage of the commutativity of the adjoint action of observables
according to Lemma 3, and each of the subsequent lines amounts to evaluating the highlighted adjoint
actions utilizing the formulas for the commutators, with the last step resulting from applying SqPO-type
jump-closure in the sense of (3).

Granted that the derivation of the evolution equation for G (l ;w) is somewhat involved, one may
extract from it a very interesting insight via a transformation of variables wi ! lnxi (which entails that

∂
∂wi

! xi
∂

∂xi
), and collecting coefficients for the operators n̂i := xi

∂
∂xi

:

∂
∂l G (l ; lnx) = D̂G (l ; lnx)

D̂= x2
exn(2n̂e �3n̂g +2n̂µ � n̂n)+ x2

exnxµ(3n̂g �6n̂µ +3n̂n)+ x2
exnx2

µ(4n̂µ �3n̂n)+ x2
e n̂n

(58)
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⇣
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Running example: planar rooted binary trees (PRBTs)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)
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eadw1Ô2 (R̂)

⌘
= eadw1Ô2
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contributions that cancel from the commutator due to sequential independence):
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ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)

14 On Stochastic Rewriting and Combinatorics

Lemma 3. For arbitrary R̂ = r(d (R)) and {Ô1, . . . , Ôm} a set of observables, nested actions of the
observables on R̂ are multi-linear and symmetric in the following sense (for any permutation s 2 Sm):

adw1Ô1

⇣
adw2Ô2

⇣
. . .

⇣
adwmÔm

(R̂)
⌘
. . .

⌘⌘
= (w1 · · ·wm)adÔs(1)

⇣
adÔs(1)

⇣
. . .

⇣
adÔs(m)

(R̂)
⌘
. . .

⌘⌘
. (52)

Thus in particular

(i) eadw1Ô1 [Ô2, R̂] = [Ô2,e
adw1Ô1 (R̂)] , (ii) eadw1Ô1

⇣
eadw1Ô2 (R̂)

⌘
= eadw1Ô2

⇣
eadw1Ô1 (R̂)

⌘
. (53)

As a case study, we will now present a body of results on a set of observables that is non-trivially
polynomially jump-closed with respect to Ĝ. We will represent by convention an observable ÔP simply
by the pattern P (motivated by the fact that the rule underlying ÔP is an identity rule):

ÔP1 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP2 :=
⇤

⌘ Â
T2{I,L,R} T

, ÔP3 :=

⇤

⌘ Â
T2{I,L,R}

T

(54)

We will need a considerable number of commutator equations, which could in principle ultimately be
performed automatically via our tool5 ReSMT [8], but which were computed manually here. For the
sake of illustration, we present the computation of [ÔP1, Ĝ] in some detail below (where . . . denote
contributions that cancel from the commutator due to sequential independence):

[ÔP1, Ĝ] =

"

T
,

⇤
⇤ +

⇤
⇤

#

=
⇤

⇤ +
⇤

⇤
+

⇤

L +
⇤

R
+

⇤
⇤ +

⇤
⇤

+
⇤

R +
⇤

L
+ . . .

�
⇤

L �
⇤

L �
⇤

R
�

⇤
⇤

�
⇤

R �
⇤

L
� . . .= Ĝ

(55)

While ÔP1 has thus a similarly simple closure property under commutators with Ĝ as was the case with
ÔE , the observables ÔP2 and ÔP3 in contrast present an interesting form of higher-order commutator-

5https://gitlab.com/nicolasbehr/ReSMT (GitHub), https://nicolasbehr.gitlab.io/ReSMT (documentation)
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P2I :=

P3I :=

30 = { }*

*
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P2I :=

P3I :=

31 = { }*

*
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P2I :=

P3I :=

*

*

32 = {

}
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P2I :=

P3I :=

*

* |3100 | = 200!
100!

≈ 10217
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Summary
An alternative approach to enumerative combinatorics based upon rewriting theory:

combinatorial structure S

generating function of S

choice of patterns P

multi-variate generating function

• generate structure S via applying 
rewriting rules to some initial 
configuration “in all possible ways” 

• count patterns via applying special 
types of rewriting rules 

• formulate generating functions via 
linear operators associated to 
rewriting rules 

Key tool: the rule-algebra formalism!
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Outlook

https://gitlab.com/nicolasbehr/ReSMT

• towards automated computations via ReSMT 
• “Flajolet-style” analytic combinatorics via the rule-

algebraic approach? 
• asymptotics of pattern-count distributions? 
• Hopf algebra(s) of tracelets…
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Merci beaucoup !


