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Motivation

• formal power series:

f pxq P Rrrxss :ô f pxq “
ÿ

ně0

fn xn pwith fn P R for all n P Zě0q

• two natural linear operators: x̂ and Bx

x̂ : Rrrxss Ñ Rrrxss : xn ÞÑ xn`1 , Bx : Rrrxss Ñ Rrrxss : xn ÞÑ

$

&

%

0 if n“ 0

nxn´1 if ną 0

• for all p P Zą0 and f pxq,gpxq P Rrrxss, “of course. . . ”

Bp
x pf pxqgpxqq “

p
ÿ

k“0

ˆ

p
k

˙

´

Bk
x f pxq

¯´

Bp´k
x gpxq

¯

ñ non-trivial “normal-ordering” type operator relation: (for p,q P Zě0)

Bp
x x̂q “

minpp,qq
ÿ

k“0

k!
ˆ

p
k

˙ˆ

q
k

˙

x̂q´kBp´k
x
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• non-trivial “normal-ordering” type operator relation: (for p,q P Zě0)

Bp
x x̂q “

minpp,qq
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k“0
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minpp,qq
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k“0

1
k!

ˆ

p!
pp´ kq!

˙ˆ

q!
pq´ kq!

˙

# of ways to choose k objects from pools of p and q objects, disregarding order

x̂q´kBp´k
x

ñ WHY?

somewhat surprising answer:

Because x̂ and Bx are the canonical representations of certain rule algebra elements associated to

(discrete) graph rewriting rules!
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Plan

The main construction:

• Recap: Sesqui-Pushout (SqPO) rewriting in adhesive categories

• Main result I: a concurrency theorem for SqPO rewriting

• Main result II: an associativity theorem for SqPO rule compositions

• Main result III: from SqPO rewriting to SqPO rule algebras

Application examples:

• formal power series and the Heisenberg-Weyl algebra

• Main result IV: stochastic mechanics of continuous-time Markov chains for SqPO-type

stochastic rewriting systems



The category-theoretical setup



The basic setup for compositional rewriting

Adhesive and extensive categories (cf. r1s, Def. 3.1 ff)

A category C is said to be adhesive if

(i) C has pushouts along monomorphisms,

(ii) C has pullbacks, and if

(iii) pushouts along monomorphisms are van Kampen (VK) squares.

If C in addition possesses a strict initial object ∅ P obpCq, i.e. an object s.th. @X P obpCq : D!iX :∅ ãÑ X
and all X Ñ∅ are isos, the category is said to be extensive. It is called finitary r2s if every object X
has only finitely many subobjects (up to iso).

• Examples for finitary adhesive extensive categories r2s:
• FinSet, the category of (finite) sets and set functions
• FinGraph, the category of (finite) directed multigraphs and graph homomorphisms (and also colored/typed

graphs, attributed graphs, hypergraphs,. . . )
• different variants of categories of finite typed graphs (Kappa!)

[1] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545

[2] Karsten Gabriel et al. “Finitary M -adhesive categories”. In: Mathematical Structures in Computer Science 24.04 (June 2014)

http://dx.doi.org/10.1017/S0960129512000321


Additional special requirements for the SqPO case

Final Pullback Complement (FPC) r3s, r4s

Let C be a category. Given a commutative diagram

P
B A

C D
Q

x

w

yc (∗)

a

b

d

z

w∗

,

a pair of morphisms pd,bq is a final pullback complement (FPC) of a pair pc,aq if

(i) pa,bq is a pullback of pc,dq (i.e. if the square marked p˚q is a pullback square), and

(ii) for each collection of morphisms px,y,z,wq as in the diagram above, where px,yq is pullback of pc,zq
and where a˝w“ x, there exists a unique morphism w˚ with d ˝w˚ “ z and w˚ ˝ y“ b˝w.

[3] Andrea Corradini et al. “Sesqui-Pushout Rewriting”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 30–45

[4] Michael Löwe. “Polymorphic Sesqui-Pushout Graph Rewriting”. In: Graph Transformation. Springer International Publishing, 2015, pp. 3–18



Additional special requirements for the SqPO case (detail)

Lemma (cf. r5s, Fact 2, and r6s, Lem. 2 and Prop. 2)

Let C be adhesive.

• Every pushout square along monomorphisms is also an FPC square.

• For an arbitrary morphism f : AÑ B, pidB, f q is an FPC of pf , idAq and vice versa.

• FPCs are unique up to isomorphism

• FPCs preserve monomorphisms˚.
˚ If C d

ÐÝ D b
ÐÝ A is the FPC of C c

ÐÝ B a
ÐÝ A and if a PmonopCq, then also d PmonopCq and vice versa

(while c P monopCq entails that b P monopCq by stability of monomorphisms under pullbacks in an

adhesive category C).

[4] Michael Löwe. “Polymorphic Sesqui-Pushout Graph Rewriting”. In: Graph Transformation. Springer International Publishing, 2015, pp. 3–18

[5] Andrea Corradini et al. “Sesqui-Pushout Rewriting”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 30–45

[6] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Additional special requirements for the SqPO case (detail)

Lemma (cf. r5s, Fact 2, and r6s, Lem. 2 and Prop. 2)

Let C be adhesive.

• Every pushout square along monomorphisms is also an FPC square.

• For an arbitrary morphism f : AÑ B, pidB, f q is an FPC of pf , idAq and vice versa.

• FPCs are unique up to isomorphism

• FPCs preserve monomorphisms˚.
˚ If C d

ÐÝ D b
ÐÝ A is the FPC of C c

ÐÝ B a
ÐÝ A and if a PmonopCq, then also d PmonopCq and vice versa

(while c P monopCq entails that b P monopCq by stability of monomorphisms under pullbacks in an

adhesive category C).

(I) Assumptions for compositional SqPO rewriting r7s

C is an adhesive category in which all FPCs along monomorphisms exist, and in which FPCs
preserve monomorphisms.

[5] Michael Löwe. “Polymorphic Sesqui-Pushout Graph Rewriting”. In: Graph Transformation. Springer International Publishing, 2015, pp. 3–18

[6] Andrea Corradini et al. “Sesqui-Pushout Rewriting”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 30–45

[7] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Recap: Sesqui-Pushout rewriting



Sesqui-Pushout rewriting: linear productions and direct derivations

SqPO-type rewriting; compare r8s

Let C be an adhesive category satisfying Assumption (I). Denote by LinpCq the set of isomorphism
classes of so-called linear productions (i.e. of spans of monomorphisms),

LinpCq :“ tp” pO o
ÐÝ K i

ÝÑ Iq | o, i PmonopCquä– .

Note: Two productions OÐ K Ñ I and O1Ð K1Ñ I1 are defined to be isomorphic if there exist isomorphisms

I Ñ I1, K Ñ K1 and OÑ O1 that make the obvious diagram commute; we will not distinguish between

isomorphic productions. As natural in this category-theoretical setting, the constructions presented in the

following are understood as defined up to such isomorphisms.

[8] Andrea Corradini et al. “Sesqui-Pushout Rewriting”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 30–45



Sesqui-Pushout rewriting: linear productions and direct derivations

SqPO-type rewriting; compare r8s

Given an object X P objpCq and a linear production p P LinpCq, we denote the set of SqPO-admissible
matches MSqPO

p pXq as the set of monomorphisms m : I Ñ X. Then the diagram below is constructed by

taking the final pullback complement marked FPC followed by taking the pushout marked PO:

O K I

X1 K X

m˚

o i

kPO FPC m

o1 i1

(1)

We write pmpXq :“ X1 for the object “produced” by the above diagram. The process is called (SqPO-)

derivation of X along production p and admissible match m, and denoted pmpXq
SqPO
ðùùù

p,m
X.

[8] Andrea Corradini et al. “Sesqui-Pushout Rewriting”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp. 30–45



New: SqPO-type rule composition r9s

Let p1,p2 P LinpCq, and let m“ pI2
m2
ÐÝM21

m1
ÝÑO1q (with m1,m2 PmonopCq) be an overlap of the output

object O1 of p1 with the input object I2 of p2. Take the pushout of m (marked PO) to obtain the cospan

I2
n2
ÝÑ N21

n1
ÐÝ O1.

Then m is called an SqPO-admissible match of p2 into p1, denoted m PMSqPO
p2 pp1q, if the pushout

complement marked POC below exists:

O2 K2 I2 M21 O1 K1 I1

O21 K2 N21 K1 I21

K21

n˚2

o2 i2

k2PO n2FPC

m2 m1

PO n1 POC

o1 i1

k1 PO n˚1
o12 i12 o11 i11

PBi22
o21“o12˝i22

o21
i21“o21 ˝i11

(2)

In this case, the remaining parts of the diagram are formed by taking the final pullback complement marked FPC
and the pushouts marked PO. If m PMSqPO

p2 pp1q, we write p2
m
? p1 P LinpCq for the composite of p2 with p1

along the admissible match m, defined as

p2
m
? p1 :“ pO21

o21
ÐÝ K21

i21
ÝÑ I21q . (3)

[8] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Double-Pushout (DPO), DPO: and Sesqui-Pushout (SqPO) rewriting

LinpCq :“
!

O o
ÐÝ K i

ÝÑ I
ˇ

ˇ

ˇ
o, i PmonopCq

)

ä– (4)

A rule application of a rule r P LinpCq to an object X along a T-admissible match m (resp. m˚ for DPO:) is

defined via the following type of commutative diagram (referred to as a direct derivation in the literature):

O I

rm(X) X

m∗ m

r

T :“

O K I

rm(X) K X

m∗

o i

(B) (A) m (5)

The precise details and T-type admissibility are defined via

Type T nature of pBq nature of pAq
DPO PO POC
DPO: POC PO
SqPO PO FPC

(6)

where POC indicates that these POCs must be constructible for admissible matches.



Key operation: rule compositions r10s, r11s

Set of T-type admissible matches of r2 into r1 for T P tDPO,SqPOu:

MT
r2
pr1q :“

 

µ21 “ pI2 ÐM21 Ñ O2q
ˇ

ˇn1,n2 in POpµ21q “ pI2
n2
ÝÑ N21

n1
ÐÝ O1q

satisfy n2 PMT
r2
pN21q ^ n1 PMDPO:

r1
pN21q

(

.
(7)

For a T-type admissible match µ21 “ pI2 ÐM21 Ñ O2q PMT
r2
pr1q, construct

O2 I2 M21 O1 I1

O21 N21 I21

r2

n2T PO n1 DPO†

r1

. (8)

From this diagram, one may compute (via pullback composition ˝ of the two composable spans in the bottom row)

a span of monomorphisms pO21 ð I21q P LinpCq, which we define to be the T-type composition of r2 with r1

along µ21 (for T P tDPO,SqPOu as in (8)):

r2
µ21ŸTr1 :“ pO21 ð I21q “ pO21 ð N21q ˝ pN21 ð I21q . (9)

[10] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Sept. 2018, 11:1–11:21

[11] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Main result I: SqPO-type concurrency theorem r11s (new!)

SqPO-type Concurrency Theorem

Let C be an adhesive category satisfying Assumption (I). Let p1,p2 P LinpCq be two linear rules and

X0 P obpCq an object.

• Synthesis: Given a two-step sequence of SqPO derivations

X2
SqPO
ðùùù
p2,m2

X1
SqPO
ðùùù
p1,m1

X0 , (10)

with X1 :“ p1m1
pX0q and X2 :“ p2m2

pX1q, there exists a SqPO-composite rule q“ p2
n
? p1 for a

unique n PMsq
p2pp1q, and a unique SqPO-admissible match n PMSqPO

q pXq, such that

qnpXq
SqPO
ðùùù

q,n
X0 and qnpX0q – X2 . (11)

• Analysis: Given an SqPO-admissible match n PMsq
p2pp1q of p2 into p1 and an SqPO-admissible

match n PMSqPO
q pXq of the SqPO-composite q“ p2

n
? p1 into X, there exists a unique pair of

SqPO-admissible matches m1 PMSqPO
p1 pX0q and m2 PMSqPO

p2 pX1q with X1 :“ p1m1
pX0q such that

X2
SqPO
ðùùù
p2,m2

X1
SqPO
ðùùù
p1,m1

X0 and X2 – qnpXq . proof (12)

[12] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Main result II: SqPO-type associativity theorem r11s (new!)

SqPO-type associativity theorem

Let C be an adhesive category satisfying Assumption (I). Then the SqPO-composition operation .
.

? . on

linear productions of C is associative in the following sense: given linear productions p1,p2,p3 PLinpCq,
there exists a bijective correspondence between pairs of SqPO-admissible matches pm21,m3p21qq

and pm32,mp32q1q such that

p3
m3p21q

?

ˆ

p2
m21
? p1

˙

–

ˆ

p3
m32
? p2

˙ mp32q1

? p1 . (13)

[12] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


SqPO-type associativity theorem proof (sketch) r13s

The associativity property in the SqPO case manifests itself in a form entirely analogous to the DPO
case r12s:

The data provided along the path highlighted in orange below permits to uniquely compute the data provided

along the path highlighted in blue and vice versa (with both sets of overlaps computing the same “triple
composite” production that is encoded as the composition of the three spans in the bottom front row):

O3 K3 I3 M32 O2 K2 I2 M21 O1 K1 I1

O3 K3 I3 M3(21) O21 K ′
2 N21 K ′

1 I21

O32 K ′
3 N32 K ′′

2 I32 M(32)1 O1 K1 I1

O321 K3
N3(21) K2

N(32)1 K1 I321

[13] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

[14] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic (CSL 2018). Ed. by Dan Ghica and Achim Jung.
Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Sept. 2018, 11:1–11:21

https://arxiv.org/abs/1904.08357


From SqPO-type rule compositions to
SqPO-type rule algebras



Algebraically encoding non-determinism

input state transition

outcome possibility 1

outcome possibility 2

outcome possibility n

…

input state o1 o2 on+ + … +( )transition

(a vector) (a vector)

A possibility to encode non-determinism:

map multiple possibilities of transitions . . .

. . . into “sum of possibilities”

(via employing the notion of a vector space of states and of transitions as linear operators on this space)



The mathematical “blueprint”: the Heisenberg-Weyl algebra

• pure state: a pool of n indistinguishable particles
(of some type X)

• generic operations: remove i particles of type X
from the pool, then add o particles of type X (with

i,o P Zě0)

• elementary operations:
• pick a particle of type X at random and remove it
• add a particle of type X

ñ basic combinatorics:
• n possible ways to remove a particle
• 1 possible way to add a particle



The mathematical “blueprint”: the Heisenberg-Weyl algebra

• from the theory of bosonic Fock spaces:

|ny p“ pure state of n particles

• Ansatz: encode the elementary operations in terms of (representa-

tions of) the generators of the

Heisenberg-Weyl algebra:

a |ny :“

$

&

%

n |n´1y if ną 0

0 else

a: |ny :“ |n`1y pně 0q

• canonical commutation relations:

paa:´a:aq |ny “
`

pn`1q´pnq
˘

|ny “ |ny

ô ra,a:s “ aa:´a:a“ 1

input state transition

outcome possibility 1

outcome possibility 2

outcome possibility n

…

input state o1 o2 on+ + … +( )transition

(a vector) (a vector)



Necessary additional structures for the SqPo rule algebra construction r14s

Initial objects

An object ∅ P objpCq of some category C is said to be a strict initial object if for every object X P objpCq,
there exists a unique morphism ∅Ñ X, and if any morphism X Ñ∅ must be an isomorphism.

For example, the category Graph possesses a strict initial object (the empty graph).

[14] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

[15] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545

https://arxiv.org/abs/1904.08357


Necessary additional structures for the SqPo rule algebra construction r15s

Initial objects

An object ∅ P objpCq of some category C is said to be a strict initial object if for every object X P objpCq,
there exists a unique morphism ∅Ñ X, and if any morphism X Ñ∅ must be an isomorphism.

For example, the category Graph possesses a strict initial object (the empty graph).

Extensive categories; r14s, Lem. 4.1

An adhesive category C is an extensive category if and only if it possesses a strict initial object.

[15] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

[16] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545
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Necessary additional structures for the SqPo rule algebra construction r15s

Initial objects

An object ∅ P objpCq of some category C is said to be a strict initial object if for every object X P objpCq,
there exists a unique morphism ∅Ñ X, and if any morphism X Ñ∅ must be an isomorphism.

For example, the category Graph possesses a strict initial object (the empty graph).

Extensive categories; r14s, Lem. 4.1

An adhesive category C is an extensive category if and only if it possesses a strict initial object.

Assumption (II): Prerequisites for SqPO-type rule algebras

We assume that C is an adhesive category satisfying Assumption (I), and which is in addition finitary
and possesses a strict initial object ∅ P objpCq.

[15] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

[16] Stephen Lack and Paweł Sobociński. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005), pp. 511–545

https://arxiv.org/abs/1904.08357


Main result III: SqPO-type rule algebra construction r15s

Let δ : LinpCq ÑRC be defined as an isomorphism from LinpCq to the basis of a free R-vector space

RC ” pRC,`, ¨q, such that

RC :“ spanRptδ ppq | p P LinpCquq . (14)

In order to clearly distinguish between elements of LinpCq and basis vectors of RC, we introduce the notation

pO
p
ð Iq :“ δ

´

O o
ÐÝ K i

ÝÑ I
¯

. (15)

[16] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Main result III: SqPO-type rule algebra construction r15s

Let δ : LinpCq ÑRC be defined as an isomorphism from LinpCq to the basis of a free R-vector space

RC ” pRC,`, ¨q, such that

RC :“ spanRptδ ppq | p P LinpCquq . (14)

In order to clearly distinguish between elements of LinpCq and basis vectors of RC, we introduce the notation

pO
p
ð Iq :“ δ

´

O o
ÐÝ K i

ÝÑ I
¯

. (15)

Define the SqPO rule algebra product dRC on a category C that satisfies Assumption (II) as the binary
operation

dRC : RCˆRC ÑRC : pR1,R2q ÞÑ R1dRC R2 , (16)

where for two basis vectors Ri “ δ ppiq encoding the linear rules pi P LinpCq (i“ 1,2),

R2dRC R1 :“
ÿ

mPMsq
p2 pp1q

δ

ˆ

p2
m
? p1

˙

. (17)

[16] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357
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RC :“ spanRptδ ppq | p P LinpCquq . (14)

In order to clearly distinguish between elements of LinpCq and basis vectors of RC, we introduce the notation

pO
p
ð Iq :“ δ

´

O o
ÐÝ K i

ÝÑ I
¯

. (15)

Define the SqPO rule algebra product dRC on a category C that satisfies Assumption (II) as the binary
operation

dRC : RCˆRC ÑRC : pR1,R2q ÞÑ R1dRC R2 , (16)

where for two basis vectors Ri “ δ ppiq encoding the linear rules pi P LinpCq (i“ 1,2),

R2dRC R1 :“
ÿ

mPMsq
p2 pp1q

δ

ˆ

p2
m
? p1

˙

. (17)

The definition is extended to arbitrary (finite) linear combinations of basis vectors by bilinearity, whence for

pi,pj P LinpCq and αi,βj P R,
˜

ÿ

i

αi ¨δ ppiq

¸

dRC

¨

˝

ÿ

j

βj ¨δ ppjq

˛

‚:“
ÿ

i,j

pαi ¨βjq ¨
`

δ ppiqdRC δ ppjq
˘

. (18)
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¸

dRC

¨

˝

ÿ

j

βj ¨δ ppjq

˛

‚:“
ÿ

i,j

pαi ¨βjq ¨
`

δ ppiqdRC δ ppjq
˘

. (18)

We call Rsq
C ” pRC,dRCq the SqPO-type rule algebra over the finitary adhesive and extensive category C.
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Main result III: SqPO-type rule algebra construction r15s

Theorem

For every category C satisfying Assumption (II), the associated SqPO-type rule algebra Rsq
C ”

pRC,dRCq is an associative unital algebra, with unit element R∅ :“ p∅ð∅q.
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Example: some SqPO-type rule compositions in FinGraph

Let C“ FinGraph be the category of finite directed multigraphs, with ∅ the empty graph. Then with d”dRC ,

we find for example

δ p∅Ðâ ∅ ãÑ qdδ p Ðâ ∅ ãÑ∅q

“
ÿ

mPtp Ðâ∅ãÑ q,p Ðâ ãÑ q,
p Ðâ ãÑ qu

δ

ˆ

p∅Ðâ ∅ ãÑ q
m
? p Ðâ ∅ ãÑ∅q

˙

“ δ p Ðâ ∅ ãÑ q`2δ p Ðâ ∅ ãÑ∅q .

(19)

The result of the composition thus captures the combinatorial insight that there are two contributions that evaluate

to an isomorphic rule algebra element.
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m
? p Ðâ ∅ ãÑ∅q
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“ δ p Ðâ ∅ ãÑ q`2δ p Ðâ ∅ ãÑ∅q .

(19)

The result of the composition thus captures the combinatorial insight that there are two contributions that evaluate

to an isomorphic rule algebra element.

More generally, one finds the following structure of compositions of rule algebra elements based upon “discrete”
graph rewriting rules: letting ‚Zn denote the n-vertex graph without edges (for ně 0), one finds (for

p,q,r,sě 0)
δ p‚Zp Ðâ ∅ ãÑ‚Zqqdδ p‚Z r Ðâ ∅ ãÑ‚Z sq

“

minpq,rq
ÿ

k“0

k!
ˆ

q
k

˙ˆ

r
k

˙

δ p‚Zpp`r´kqÐâ ∅ ãÑ‚Zpq`s´kqq .
(20)



Canonical representations of the SqPO-type rule algebras r16s

Canonical representation of Rsq
C

Let C be a category satisfying Assumption (II), with a strict initial object ∅ P obpCq, and let Rsq
C be

its associated rule algebra of SqPO type. Denote by Ĉ the free R-vector space spanned by basis
vectors |Xy indexed by isomorphism classes of objects,

Ĉ :“ spanR pt |Xy|X P objpCq–uq ” pĈ,`, ¨q . (21)

Then the canonical representation ρ
sq
C : Rsq

C Ñ EndRpĈq of Rsq
C is defined as a morphism from the

SqPO-type rule algebra Rsq
C to endomorphisms of Ĉ, with

ρ
sq
C pδ ppqq |Xy :“

$

&

%

ř

mPMSqPO
p pXq |pmpXqy if MSqPO

p pXq ‰∅

0Ĉ otherwise,
(22)

and extended to arbitrary elements of Rsq
C and of Ĉ by linearity.

Note: ρ
sq
C being a representation of the unital associative algebra Rsq

C entails the two properties

ρ
sq
C pR∅q “ 1EndRpĈq , ρ

sq
C
`

R1dRC R2
˘

“ ρ
sq
C pR1qρ

sq
C pR2q . (23)
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Canonical representations of the SqPO-type rule algebras – illustrative example r17s

Define ρ ” ρ
sq
FinGraph. Let

D̂ :“ ρpδ p∅Ðâ ∅ ãÑ qq , X̂ :“ ρpδ p Ðâ ∅ ãÑ∅qq , |ny :“ |‚Znypně 0q . (24)

One may verify that

D̂ |0y “ 0
{FinGraph , D̂ |ny “ n |n´1y pną 0q , X̂ |ny “ |n`1y . (25)

The above data furnishes a representation of the famous Heisenberg-Weyl algebra that is of fundamental

importance in combinatorics and physics (see e.g. r17s). An isomorphic representation is given by the linear

operators x̂ (multiplication by x) and Bx (derivation by x) acting on the R-vector space spanned by monomials
xn, with

Bxx0 “ 0 , Bxxn “ nxn´1 , x̂xn “ xn`1 . (26)

However, the action of D̂ and X̂ is of course defined on all states |Gy with G P objpFinGraphq, so that we may

e.g. compute the following “derivative of a graph”:

D̂ | y “ 2 | y` | y (27)

[17] P Blasiak et al. “Boson normal ordering via substitutions and Sheffer-Type Polynomials”. In: Physics Letters A 338.2 (2005), pp. 108–116; Pawel Blasiak, Gerard HE Duchamp, et al. “Combinatorial
Algebra for second-quantized Quantum Theory”. In: Advances in Theoretical and Mathematical Physics 14.4 (2010), pp. 1209–1243; Pawel Blasiak and Philippe Flajolet. “Combinatorial Models of
Creation-Annihilation”. In: Séminaire Lotharingien de Combinatoire 65.B65c (2011), pp. 1–78
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Continuous-time Markov chains via
stochastic mechanics of SqPO-type
rule algebras



Stochastic transition systems and continuous time Markov chain (CTMC) theory

• Standard CTMC theory r18s: one way to describe the

CTMC’s dynamics is to give a probability distribution
(with S the set of pure states)

|Ψptqy :“
ÿ

SPS
pSptq|Sy (28)

of being in one of the pure states (represented by basis

vectors |Sy), and specifying the Master equation (aka

Kolmogorov forward equation)

d
dt
|Ψptqy “ H|Ψptqy , (29)

where H is the evolution operator.

• How precisely H is determined for a given system will

be intimately related to the concept of

rule algebras in our formalism!

discrete 
state space

set of 
discrete 

transitions

S = {S1, S2, . . .}

T =

⇢
~SI1

⌧1�! ~SO1
, ~SI2

⌧2�! ~SO2
, . . .

�

evolution operator 
H

[18] James R. Norris. Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, 1998



The “stochastic mechanics” viewpoint

Benefits:
D a full-blown formalism r19sr20s aka “stochastic
mechanics” r21s for studying CTMCs:

• Observables O are linear operators under which

each pure state is an Eigenstate,

O|Sy “ ωOpSq|Sy . (30)

• Expectation values of observables are computed

by introducing the “dual projection vector”

x|Sy :“ 1 @S P S , (31)

such that for any state probability distribution |Ψptqy

E|ΨptqypOq ” xOyptq :“ x|O|Ψptqy . (32)

ñ evolution of expectation values of observables
via Master equation:

d
dt
xOyptq “ xOHyptq . (33)

• Additional property of the evolution operator H:

x|etH |Ψp0qy !
“ 1 ñ x|H “ 0 , (34)

i.e. H preserves normalizations.

ñ analogue of the Ehrenfest equation of quantum

mechanics:

d
dt
xOyptq “ xrO,Hsyptq , (35)

where rA,Bs :“ AB´BA is the commutator

[19] M Doi. “Second quantization representation for classical many-particle system”. In: Journal of Physics A: Mathematical and General 9.9 (Sept. 1976), pp. 1465–1477

[20] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46–55

[21] John Baez and Jacob D Biamonte. Quantum Techniques in Stochastic Mechanics. WORLD SCIENTIFIC, May 2017

https://doi.org/10.1088%2F0305-4470%2F9%2F9%2F008
https://doi.org/10.1142%2F10623


Continuous-time Markov chains (CTMCs) over finitary adhesive extensive categories r22s

Let C be a category satisfying Assumption (II), and which in addition possesses a countable set of

isomorphism classes of objects objpCq–. Let Ĉ denote the free R-vector space indexed by iso-classes of objects

of C. We define the space ProbpCq as the space of sub-probability distributions in the following sense:

ProbpCq :“

$

&

%

|Ψy “
ÿ

oPobjpCq–

ψo |oy

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

@o P objpCq– : ψo P Rě0^
ÿ

oPobjpCq–

ψo ď 1

,

.

-

(36)

Let StochpCq :“ EndRpProbpCqq be the space of endomorphisms of ProbpCq, with elements referred to as

sub-stochastic operators.
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Continuous-time Markov chains (CTMCs) over finitary adhesive extensive categories r22s

Definition

Then a continuous-time Markov chain (CTMC) is specified in terms of a tuple of data p|Ψp0qy ,Hq,
where |Ψp0qy P ProbpCq is the initial state, and where H P EndRpSCq is the infinitesimal generator
or Hamiltonian of the CTMC (with SC the space of real-valued sequences indexed by elements of

objpCq– and with finite coefficients). H is required to be an infinitesimal (sub-)stochastic operator, which

entails that for H ” pho,o1qo,o1PobjpCq– and for all o,o1 P objpCq–,

piq ho,o ď 0 , piiq@o‰ o1 : ho,o1 ě 0 , piiiq
ÿ

o1
ho,o1 “ 0 . (36)

Then this data encodes the evolution semi-group E : Rě0 Ñ StochpCq as the (point-wise minimal

non-negative) solution of the Kolmogorov backwards or master equation:

d
dt E ptq “ HE ptq , E p0q “ 1StochpCqñ @t, t1 P Rě0 : E ptqE pt1q “ E pt` t1q (37)

Consequently, the time-dependent state |Ψptqy of the system is given by

@t P Rě0 : |Ψptqy “ E ptq |Ψp0qy . (38)
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Observables r22s

Definition

Let OC Ă EndRpSCq denote the space of observables, defined as the space of diagonal operators,

OC :“ tO P EndRpSCq | @X P objpCq– : O |Xy “ ωOpXq |Xy , ωOpXq P Ru . (39)

We furthermore define the so-called projection operation x| : SC Ñ R via extending by linearity the

definition of x| acting on basis vectors of Ĉ,

@X P objpCq– : x |Xy :“ 1R . (40)

These definitions induce a notion of correlators of observables (also referred to as (mixed) moments),

defined for O1, . . . ,On P OC and |Ψy P ProbpCq as

xO1, . . . ,Ony|Ψy :“ x|O1, . . . ,On |Ψy “
ÿ

XPobjpCq–

ψX ¨ωO1pXq ¨ ¨ ¨ωOnpXq . (41)

[23] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Observables r22s

Definition

Let OC Ă EndRpSCq denote the space of observables, defined as the space of diagonal operators,
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We furthermore define the so-called projection operation x| : SC Ñ R via extending by linearity the

definition of x| acting on basis vectors of Ĉ,

@X P objpCq– : x |Xy :“ 1R . (40)

These definitions induce a notion of correlators of observables (also referred to as (mixed) moments),

defined for O1, . . . ,On P OC and |Ψy P ProbpCq as

xO1, . . . ,Ony|Ψy :“ x|O1, . . . ,On |Ψy “
ÿ

XPobjpCq–

ψX ¨ωO1pXq ¨ ¨ ¨ωOnpXq . (41)

Note:Depending on the concrete case, the eigenvalue ωOpXq in O |Xy “ ωOpXq |Xy may e.g. coincide with the

number of occurrences of a pattern in the object X.
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SqPO-type stochastic mechanics framework r22s

Theorem

Let C be a category satisfying Assumption (II). Let tpOj
pj
ð Ijq PRsq

C ujPJ be a (finite) set of rule algebra

elements, and tκj P Rě0ujPJ a collection of non-zero parameters (called base rates). Then one may

construct the Hamiltonian H of the associated CTMC from this data according to

H :“ Ĥ` H̄ , Ĥ :“
ÿ

jPJ

κj ¨ρ
sq
C

´

Oj
pj
ð Ij

¯

, H̄ :“´
ÿ

jPJ

κj ¨O
sq
Ij
. (42)

Here, the notation Osq
M for arbitrary objects M P objpCq denotes the observables (sometimes referred to

as motif counting observables) for the resulting CTMC of SqPO-type, with

Osq
M :“ ρ

sq
C

´

δ

´

M idM
ÐÝÝM idM

ÝÝÑM
¯¯

. (43)

We furthermore have the SqPO-type jump-closure property, whereby for all pO
p
ð Iq PRsq

C

x|ρ
sq
C pO

p
ð Iq “ x|Osq

I . (44)
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Observable moment evolution equations

• Proposition ( r23s, Prop. 3.35): For linear
operators A,B P EndKpV q (with V a K-

vector space) and λ a formal variable,

eλABe´λA “ eadλA B , (45)

where

adAB :“ rA,Bs “ AB´BA , ad0
AB :“ B .

• Application: suppose H is an evolution

operator, and let

λ ¨O ”
ÿ

i

λiOi

denote a formal linear combination of

observables Oi.

• Define the moment-generating function M pt;λ q

of the CTMC as

M pt;λ q :“
A

eλ ¨O
E

ptq ,

whence formally

”

B
n1
λi1
¨ ¨ ¨B

nk
λik

M pt;λ q

ı

ˇ

ˇ

ˇ

ˇ

λÑ0
“ xOn1

i1 ¨ ¨ ¨O
nk
ik yptq .

[5] Brian C. Hall. Lie Groups, Lie Algebras, and Representations. Springer International Publishing, 2015

[6] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Stochastic mechanics of graph rewriting”. In: Proceedings of the 31st Annual ACM-IEEE Symposium on Logic in Computer Science (LICS 2016)
(2016), pp. 46–55

[7] Nicolas Behr, Vincent Danos, and Ilias Garnier. “Combinatorial Conversion and Moment Bisimulation for Stochastic Rewriting Systems”. In: arXiv preprint 1904.07313 (2019)
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Formal all-order moment
evolution equation r24sr25s:

d
dt

M pt;λ q “

Aˇ

ˇ

ˇ
eλ ¨OH

ˇ

ˇ

ˇ
Ψptq

E

“

Aˇ

ˇ

ˇ

´

eλ ¨OHe´λ ¨O
¯

eλ ¨O
ˇ

ˇ

ˇ
Ψptq

E

“

Aˇ

ˇ

ˇ

´

eadλ ¨O H
¯

eλ ¨O
ˇ

ˇ

ˇ
Ψptq

E

.
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Application example: an “edge-based birth-death process” r25s

Let FinGraph be the finitary restriction of the category Graph, and denote by ∅ P FinGraph the strict initial

object (the empty graph).

We define a stochastic SqPO rewriting system based upon rules encoding vertex creation/deletion (v˘) and

edge creation/deletion (e˘):

v` :“ p Ð∅Ñ∅q v´ :“ p∅Ð∅Ñ q

e` :“ p Ð Ñ q e´ :“ p Ð Ñ q
(46)

Together with a choice of base rates ν˘,ε˘ P Rě0 and an initial state |Ψp0qy P ProbpFinGraphq, this data

defines a stochastic rewriting system with Hamiltonian H :“ Ĥ` H̄,

Ĥ “ ν`V``ν´V´` ε`E`` ε´E´

H̄ “´ν`O∅´ν´O ´ ε`O ´ ε´O ,
(47)

where V˘ :“ ρ
sq
FinGraphpδ pv˘qq and E˘ :“ ρ

sq
FinGraphpδ pe˘qq.
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Application example: an “edge-based birth-death process” r25s

Vertex-counting observable dynamics:

• Exponential moment generating function of the observable OV :“ O ,:

MVpt;λ q :“ x|eλOV |Ψptqy pt ě 0 , λ formalq (48)

[26] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)

https://arxiv.org/abs/1904.08357


Application example: an “edge-based birth-death process” r25s

Vertex-counting observable dynamics:

• Exponential moment generating function of the observable OV :“ O ,:

MVpt;λ q :“ x|eλOV |Ψptqy pt ě 0 , λ formalq (48)

• formal evolution equation for MVpt;λ q:

B
Bt MVpt;λ q “ x|eλOV H |Ψptqy “ x|

´

eλOV He´λOV
¯

eλOV |Ψptqy

“ x|

´

eadλOV H
¯

eλOV |Ψptqy .
(49)
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Application example: an “edge-based birth-death process” r25s

Vertex-counting observable dynamics:

• Exponential moment generating function of the observable OV :“ O ,:

MVpt;λ q :“ x|eλOV |Ψptqy pt ě 0 , λ formalq (48)

• formal evolution equation for MVpt;λ q:

B
Bt MVpt;λ q “ x|eλOV H |Ψptqy “ x|

´

eλOV He´λOV
¯

eλOV |Ψptqy

“ x|

´

eadλOV H
¯

eλOV |Ψptqy .
(49)

• Since by definition x|H “ 0, it remains to compute the adjoint action adOV pHq of OV on H:

adOV pHq “ ν`rOV ,V`s`ν´rOV ,V´s` ε`rOV ,E`s` ε´rOV ,E´s

“ ν`V`´ν´V´
(50)

Note: the result that rOV ,E˘s “ 0 has a very simple intuitive meaning: in applications of the linear rules

e˘, the number of vertices remains unchanged, whence the vanishing of the commutator.
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MVpt;λ q :“ x|eλOV |Ψptqy pt ě 0 , λ formalq (48)

• formal evolution equation for MVpt;λ q:

B
Bt MVpt;λ q “ x|eλOV H |Ψptqy “ x|

´

eλOV He´λOV
¯

eλOV |Ψptqy

“ x|

´

eadλOV H
¯

eλOV |Ψptqy .
(49)

• Combining these results with the SqPO-type jump-closure property, we finally arrive at

B
Bt MVpt;λ q “ ν`

´

eλ ´1
¯

x|V`eλOV |Ψptqy`ν´

´

e´λ ´1
¯

x|V´eλOV |Ψptqy

(44)
“ ν`

´

eλ ´1
¯

x|eλOV |Ψptqy`ν´

´

e´λ ´1
¯

x|OV eλOV |Ψptqy

“

´

ν`

´

eλ ´1
¯

`ν´

´

e´λ ´1
¯

B
Bλ

¯

MVpt;λ q .

(50)
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Application example: an “edge-based birth-death process” r29s

Vertex-counting observable dynamics:

• Exponential moment generating function of the observable OV :“ O ,:

MVpt;λ q :“ x|eλOV |Ψptqy pt ě 0 , λ formalq (48)

• Supposing for simplicity an initial state |Ψp0qy “ |G0y (for G0 P objpGraphfinq some graph with NV vertices

and NE edges), we find that MVp0;λ q “ exppλNVq. The resulting initial value problem may be solved in

closed-form via semi-linear normal-ordering techniques known from the combinatorics literature r26s (see

also r27s, r28s), and we obtain (for t ě 0)

MVpt;λ q “ exp
ˆ

ν`

ν´
peλ ´1qp1´ e´ν´tq

˙

´

1`peλ ´1qe´ν´t
¯NV

. (49)

In the limit tÑ8, the moment-generating function becomes that of a Poisson-distribution (of parameter

ν`{ν´), thus confirming the aforementioned intuition that the vertex-counting observable has the dynamical

behavior of a so-called birth-death process (see e.g. r29s).
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Application example: an “edge-based birth-death process” r29s

Edge-counting observable dynamics:

• For sake of illustration, consider the evolution equation for the expectation value of the edge-counting
observable OE :“ O , which reads (analogue of the so-called Ehrenfest equation)

B
Bt x|OE |Ψptqy “ x|OE H |Ψptqy “ x|

`

H OE`rOE,Hs
˘

|Ψptqy . (50)

• Recalling that x|H “ 0, it remains to compute the commutator rOE,Hs:

rOE,Hs “ ν`rOE,V`s`ν´rOE,V´s` ε`rOE,E`s` ε´rOE,V´s

“ ν` ¨0´ν´pE
0,1
´ `E1,0

´ q` ε`E`´ ε´E´

E0,1
´ “ ρ

sq
FinGraph

´

δ

´

b
Ð

b
Ñ

a b

¯¯

, E1,0
´ “ ρ

sq
FinGraph

´

δ

´

a
Ð

a
Ñ

a b

¯¯

.

(51)

• It then remains to apply the jump-closure property together with the identity O “ OVpOV ´1q in order

to obtain the evolution equation

B
Bt x|OE |Ψptqy “ ε` x|OVpOV ´1q |Ψptqy´pε´`2ν´qx|OE |Ψptqy . (52)
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Application example: an “edge-based birth-death process” r29s
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Time-evolution of x|OE |Ψptqy for |Ψp0qy “ |∅y.
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SqPO-type concurrency theorem – proof of the synthesis part r29s

O2 K2 I2 M21 O1 K1 I1

N21

X2 K2 X1 K1 X0

(i) Obtain the span n“ pI2ÐM21 ÑO1q via pulling back the cospan pI2ÑX1ÐO1q.

(ii) construct N21 via taking the pushout of n, which induces a unique arrow N21 ÑX1 (that is a

monomorphism due to effectiveness of pushouts in adhesive categories).
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SqPO-type concurrency theorem – proof of the synthesis part r29s
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(iii) Take the pullbacks of the spans Ki Ñ X1Ð N21 (for i“ 1,2), obtaining the squares p21q and p31q.

(iv) By virtue of pushout-pullback decomposition, the squares p2q and p21q are pushouts.

(v) Invoking vertical FPC-pullback decomposition, the squares p3q and p31q are FPCs.

(vi) Let O21 :“ POpO2 Ð K2 Ñ K12q and I21 :“ POpO1 Ð K1 Ñ K11q. Then via vertical FPC-pushout
decomposition the squares p1q and p11q are FPCs and I21 ÑX0 is a monomorphism, while via

pushout-pushout decomposition the squares p4q and p41q are pushouts.
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(vii) Take pullbacks K21 “ PBpK12 Ñ N21 Ð K11q and K21 “ PBpK2 Ñ X1 Ð K1q, which by universality of

pullbacks induces a unique arrow K21 Ñ K21.

(viii) Via pullback-pullback decomposition, the squares lpK21,K21,Ki,K1i q (for i“ 1,2) are pullbacks.

(ix) Since the square lpK11,K1,X1,N21q is a pushout, via the van Kampen property the square

lpK21,K21,K2,K12q is a pushout.
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(x) Since pushouts along monos are also FPCs, it follows via horizontal composition of FPCs that the square

lpK21,K21,X1,N21q is an FPC.

(xi) The pushout square lpK11,K1,X1,N21q is also an FPC, so via horizontal decomposition of FPCs the

square lpK21,K21,K1,K11q is an FPC.
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(xiii) The claim follows by invoking pushout composition and horizontal FPC composition in order to obtain

the pushout square lpK21,K21,X2,O21q and the FPC square lpK21,K21,X0, I21q.

back to main text
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