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Chemical reaction systems

State: a pool of indistinguishable
particles (of different types)
Transition: eg. A+ B— C

(i) select at random atype A and a
type B particle; remove these
(ii) add a particle of type C

Dynamics: transitions occur at ran-
dom with probability proportional to
number of possibilities that the in-
put pattern may be found in a state

= highly intricate stochastic dynamics!
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Modern systems biology: pathways
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The basic setup for compositional rewriting

Adhesive and extensive categories (cf. [2], Def. 3.1 ff)

A category C is said to be adhesive if
(i) C has pushouts along monomorphisms,
(i) C has pullbacks, and if
(iii) pushouts along monomorphisms are van Kampen (VK) squares.

If C in addition possesses a strict initial object & € 0b(C), i.e. an object s.th.
VX € ob(C) : lix : @ — X and all X — & are isos, the category is said to
be extensive. It is called finitary [3] if every object X has only finitely many
subobjects (up to iso).

- Examples for finitary adhesive extensive categories [3]:
« FinSet, the category of (finite) sets and set functions
» FinGraph, the category of (finite) directed multigraphs and graph homomor-
phisms (and also colored/typed graphs, attributed graphs, hypergraphs,...)
« different variants of categories of finite typed or attributed graphs (Kappa!)

[2] Stephen Lack and Pawet Sobociniski. “Adhesive and quasiadhesive categories”. In: RAIRO-Theoretical Informatics and Applications 39.3 (2005),
pp. 511-545

[3] Karsten Gabriel et al. “Finitary .#-adhesive categories”. In: Mathematical Structures in Computer Science 24.04 (June 2014)


http://dx.doi.org/10.1017/S0960129512000321
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Brief comments on abstract category-theoretical operations:

» pushout (PO) along monomorphisms in the category Set:

i A — intersection of Band Cin D
Interpretation: i
\ / D — unionof Band C along A

» pushout complement (POC) of D «— B < A: a set C and monomorphisms
D « C < A such that the square o(ABDC) is a pushout

« pullback (PB) along monomorphisms in the category Set:

\ / Interpretation: A — intersection of Band Cin D



Double-Pushout (DPO), DPO' and Sesqui-Pushout (SqPO) rewriting

Lin(C) := {0«1Ki>1’0,i€m0n0(C)} S~

A rule application of a rule r € Lin(C) to an object X along a T-admissible match m
(resp. m* for DPOT) is defined via the following type of commutative diagram (referred
to as a direct derivation in the literature):

T 02— K —s1
mJ{ L weo (B L (A) |m
m(X) &= X (X)) < K- » X

The precise details and T-type admissibility are defined via

Type T | nature of (B) ‘ nature of (A)

DPO PO
DPOY PO
SqPO PO FPC

where indicates that these POCs must be constructible for admissible matches.



Key operation: rule compositions [4], [5]

Set of T-type admissible matches of r; into ry for T € {DPO,SqPO}:
M] (1) == {121 = (I < May — 0)|n1,n2 inPO(up1) = (I > Ny <~ 0y)
satisfy ny € MIZ (Nz]) A NnpE M?]POT (Nz[)} .

For a T-type admissible match py; = (I, «<— M1 — O3) € M (r1), construct

OQ’LIQ%M21*>01/L11

T NPO% ppot | -

Oy &——— Nog <—— |

From this diagram, one may compute (via pullback composition o of the two
composable spans in the bottom row) a span of monomorphisms

(0,1 < I1) € Lin(C), which we define to be the T-type composition of rp with ry
along Uy (for T € {DPO,SqPO} as in (9)):

rti<rr; = (021 < 1) = (021 < Nyj)o(Nay < 1)

[4] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPlcs)

Dagstuhl, Germany: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21

[5] Nicolas Behr. “Sesqui-Pushout Rewriting: Concurrency, Associativity and Rule Algebra Framework”. In: arXiv preprint 1904.08357 (2019)


https://arxiv.org/abs/1904.08357
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(a) Tracelets as (minimal) derivation traces.
(b) Tracelet generation (Definition 2.1).
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(d) Tracelet analysis (Section 3).
(c) Tracelet composition (Definition 2.2).

Figure 2 Schematic overview of the tracelet and tracelet analysis framework.
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[6] Nicolas Behr and Pawel Sobocinski. “Rule Algebras for Adhesive Categories”. In: 27th EACSL Annual Conference on Computer Science Logic
(CSL 2018). Ed. by Dan Ghica and Achim Jung. Vol. 119. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Sept. 2018, 11:1-11:21
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https://arxiv.org/abs/1904.09322
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Tracelets — “generative” definition [9]

Let T € {DPO,SqPO} be the type of rewriting, and let Lin(C) denote the set of linear
rules with conditions over C.
Tracelets of length 1: the set 91T of type T tracelets T'(R) of length 1 is defined as

O+ JT<cy
A== | 1| R = (r.¢;) € Lin(C)
O<——1I<wcs

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelets — “generative” definition [9]

Tracelets of length n + 1: given tracelets 7, € ﬂlT oflength1and 7,,...; € ﬂnT of
length n (for n = 1), we define a span of monomorphisms pt = (1| —< M < O,...1)
as T-admissible, denoted u € MT;1 (Ty...1), if the following diagram is constructible:

Ont1 “ Iy <cr,,, Op “ I, <cy, 0, I, <cy,
o (R o]
Opst == Ing1 = M < O <—Y" o YV e—TLu <, ,
J T \PO/ prot | | pro J
Onstyn < v v, Y = Ty -
Constructibility due to non-existence of the requisite pushout complements, or

because the tentative composite condition ¢;, ,,., might evaluate to false, with

cl(n+1)~- = Shift([n...l — ](”+1>.4.1 7c1n-»«l)

n n+1,n>

1 . 1
/\ Trans(Y(":lJl) <= 1I(p1)...1,Shift(Z, ) — yoth i)

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelets — “generative” definition [9]

Tracelets of length n + 1: given tracelets 7,, | € ?T oflength1and 7,,...; € yT of
length n (for n > 1), we define a span of monomorphisms pt = (I, —< M < O,...1)
as T-admissible, denoted 1 € MT}] (Ty...1), if the following diagram is constructlble.

Oni1 A Iy <cr,,, O, “ I, <cy, O, I, «cy,
T [ o]
Opy1 == Iy <= M > Oy == Y,f’;f Lo Y e— =,
l T \PO/ DPO | pro l
Onr1)1 < P AR 1  Voo Y = Ty =

If ue MTT] (Ty...1), we define a tracelet T, |*£1T,,...; of lengthn+ 1 as

Onpn = Ly e, 0wl <q, O =T <c,
Tyt LTy = N / TN\ ‘ T ‘
O y Yo y (D) Yy - Iinsr)1 < c

n+ln

We define the set ﬂT of type T tracelets of length n + 1 as
+1

Tt

n

L= AT LT[ Tug1 € A Ty € G, we MTY, (T, )}~

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss”. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelets — “generative” definition [9]

Tracelets of length n + 1: given tracelets 7,1 | € ,?T oflength1and 7,,...; € ﬂT of
length n (for n = 1), we define a span of monomorphisms pt = (1,41 <= M < O,...1)
as T-admissible, denoted u € MTT] (Ty...1), if the following diagram is constructlble.

Oni1 X Iy <cp,,, O = I, <cy, 0~ I, <y,
o [ Lo ]
Oni1 == Iy < M —> Op.q = Y,f';f L Y ==,
J T \PO/ DPO l DPO! J
Ont1)-1 < S lf e T = Ty

For later convenience, we introduce the tracelet evaluation operation [[.]],
[]]: 7T > Lin(C): 7,7 5T [[T]] := (Ot — Ip1) €,..,)
with 77 .= Un=1 T, and where (O,,...; — I,....;) denotes the span composition

(Op..t —Iy...1) :=(Op...1 <= Yrsv';l)il)oWo(Yz(’"l) <=I,.1).

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelets — “generative” definition [9]

Tracelets of length n + 1: given tracelets 7,, | € ﬁlT oflength 1 and 7,...; € ﬂnT of
length n (for n = 1), we define a span of monomorphisms p = (I, 1| < M < O,...1)
as T-admissible, denoted u € MT}] (Ty...1), if the following diagram is constructible:

Ont1 ot n+1 <4 Cr, ., O, o I, <cyp, 0, "I, < cr
T (R /o

Ouit == Inj1 <= M 5 O =Y o VW e—T.0 <,
] T PO DPO [

N 1 ’
I : PO
2 (n+1) -(n )
Ont1 nyrlrn) < Yo e Yo = Insny.afcy,

For later convenience, we introduce the tracelet evaluation operation [[.]],
[11: 7T > Lin(C): Z," 5T [[T]]:= (Opct = Ipc),.) s

with 7T :=J,>, 7", and where (O,...; ~— I,...) denotes the span composition

r (Opt = Iyt) i= (Ot = V) oree0 (V) = ). J

e ————

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss”. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelet composition [9]

For tracelets 7/,T € 7T of lengths m and n, respectively, a span of monomorphisms
pu=(,. ;<M= 0,.)is defined to be an admissible match of 7 into 7",

denoted u € MT-T'-, (T), if (i) all requisite pushout complements exist to form the type
DPO' derivations (in the sense of rules without conditions) to construct the diagram

below, where p :=m+n+1,

o, << cr, [o/pRuEy (= ¢ Oy S, <, O~ L <cy
Lo el

Oy = Y7£L7:7)171 Yz(T) = Ip.a PO On..1 <= YrSiLl YQ(,?) < Inoa <cp,

) h o ?

[ T £ [ T Cf’m.x / DPO J [mw[

Opa =Y o yB, VAN Y@ v e, ag

and if (ii) the condition Lty below does not evaluate to false:
c’(m+n+1)--. = Shlft(ln-"l — 1(m+n+l)~-1 701,,“.1)
(n+1)

+n+1 .
/\ Trans(Y’EﬁLZ ) < Iingns1)1 ,Shift(ly... = Y, e,.,))-

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelet composition [9]

For tracelets 7/,T € .77 of lengths m and n, respectively, a span of monomorphisms
p=(,. ;<M= O0,.)is defined to be an admissible match of 7 into 7",

denoted u € MT ,(T), if (i) all requisite pushout complements exist to form the type
DPOT derivations (in the sense of rules without conditions) to construct the diagram

below, where p :=m+n+1,

, ,
Tm T n
oL, <= Il <y, O’ L L<cy O, 1I,<q, O, I <cy,

R AR A L R

Oy =Y o ¥ —1 ) On 1¢Yﬂ R
L7 | kN "/ oro [ oror]
o Yo y@, Yo, . yw VW =1, , -

Then for i € MT;, (T), we define the type T tracelet composition of 7’ with T

along U as
;o 71
Om — Im < Cr, 01 — ]1 <y
THLT = TN\ LT
Opy ==Y," | - VLW —=1,,=q,

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Theorem: properties of the tracelet composition operation [9]

Let 1. denote the T-type rule composition, and let the set of T-admissible matches
be denoted by M, (ry) (for r,r; € Lin(C)).

() Forall 7/,Te 7T, MT},(T) = M (LTTD).

(i) Forall 7,7 e 7T and u € MT}(T), [[T"*£7T]] = [[T']]*<7[[T]].

(iii) The T-type tracelet composition is associative, i.e. for any three tracelets
T,,T>,T3 € T 7, there exists a bijection ¢ S3021) = S(32)1 between the sets
pairs of T-admissible matches of tracelets (with Tj; := T;*i/1T; and using
property (i)

S321y = { (k21,3 21)) 121 € M7y ([IT11]) s 13 (21) € M7y ([[721]])
Seanyr = {32, 132)1) 1132 € M{p7,3) ([[T21]) 5 B32)1 € M,y (LIT1D}

such that for all (113,, 1(3,),) = @ (K21, H321)))
hHenLr (LM 41T) = (T3“£24TT2> M/ Ty

Moreover, the bijection ¢ coincides with the corresponding bijection provided in
the associativity theorem for T-type rule compositions.

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelet characterization theorem [9]

For all type-T tracelets T ZT of length n, for all objects X, of C, and for all
monomorphisms (m : I,...; < Xp) such that m € ME[T]] (Xp), there exists a type-T
direct derivation D = T, (X() obtained via vertically composing the squares in each
column of the diagram below:

On/lln<1c1" 01&114011

l T X/ / T [ On &1, <cy, O, 21 <«cy,
Onr =Y o VW =1y ey, e \ T i ; T \

‘ T ‘ T j X, <= Xoo - Xi <= Xo

X, e— X, 1 - X; —— X,

Conversely, every T-direct derivation D of length n along rules R; = (rj,¢,) € Lin(C)
starting at an object X of C may be cast into the form D = T,,(X;) for some tracelet T
of length n and a T-admissible match m € ME[T]] (Xp) that are uniquely determined
from D (up to isomorphisms).

[9] Nicolas Behr. “Tracelets and Tracelet Analysis Of Compositional Rewriting Systemss™. In: arXiv preprint arXiv:1904.12829 (2019)
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Tracelet analysis



Convenient shorthand notation: subtracelets

O, ™ I, <cy, O+ L <cy
thn‘...|11: l T \, / T J
on Y,E"’ y2(j;> —I,.1<c, ,

For a tracelet T € <7T of length n > 1, let symbols 7 for 1 < j < n denote j-th
subtracelets of 7, so that T = t,|t,—1]...|#; is a concatenation of its subtracelets, with

Oj Ij el C[]
. (n) y .
lji= l T j ; Ynn+1n-—0 Yo :=1In1-
Y(”) Y(”)

g+l T Y1
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Convenient shorthand notation: subtracelets
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e
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Corollary: tracelet surgery

LetT e ﬂnT a T-type tracelet of length n, so that T = ] ... |f;. Then for any
consecutive subtracelets tj|tj_1 in T, one may uniquely (up to isomorphisms) construct
adiagram f;; 1y and a tracelet T(;; 1y of length 2 as follows:

i, €Iy
£} v Ti-1
OJ — IJ OJ*1 — Lj-

TN LI

(n) (n) (n)
Vi Yijo1 Yisii-2
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Corollary: tracelet surgery
LetT e ﬂnT a T-type tracelet of length n, so that T = ] ... |f;. Then for any

consecutive subtracelets tj|tj_1 in T, one may uniquely (up to isomorphisms) construct
adiagram f;; 1y and a tracelet T(;; 1y of length 2 as follows:
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Corollary: tracelet surgery

LetT e ﬂnT a T-type tracelet of length n, so that T = ] ... |f;. Then for any
consecutive subtracelets tj|tj_1 in T, one may uniquely (up to isomorphisms) construct
adiagram f;; 1y and a tracelet T(;; 1y of length 2 as follows:

Cr

/ /V\\ ' 0, -1,

LV . v PO
0; —— I; o Oi g T \ / DPO'
T e . (2) )
T @] < Y I -
(n) (n) (n)
Yilh, Vi Vil T T
() Q) =)
Yivig Yiim Yic1j-2
Ojij-1 Ljjj—1 < er,
L. = L o . K .
L(jlji—1) = (1) T ()[ , T(/U—]) = T(rj,clj) LTT(ijl,C]j_I)
n n
Yig, ==Y,

Here, u = (I, @ M — Oj_l) is the span of monomorphisms obtained by taking the
pullback of the cospan (I; — Yj(ﬁl < 0;_1), and this p1 is always a T-admissible
match. By associativity of the tracelet composition, this extends to consecutive
sequences 7] ... |t of subtracelets in T inducing diagrams 1(j|...|i—k) and tracelets of
length 1 7). |j—k), where for k = 0, #(;) = t; and T(;) = T(r, ¢y,).



Tracelet abstraction equivalence

Two tracelets T, T’ € 9,; of the same length n > 1 are defined to be abstraction
equivalent, denoted T =, T”, if there exist suitable isomorphisms on the objects in T

in order to transform T into T’ (with transformations on morphisms induced by object
isomorphisms).



Tracelet shift equivalence

Let T,7" € 7, be two tracelets of the same length 1 > 1. If there exist subtracelets
tjl...|ti—x and £ ... |#;_; such that

(i) the subtracelets have the same rule content (up to isomorphisms), i.e. there exists
a permutation 6 € Sy such that [[7,)]] = [[Tza(p)]] forallj—k <p </, and
(ii) the diagrams 1. |¢(j|_.[j—x)|---[tn @nd ... ‘tl(il---U*k) |...|t, are isomorphic,

then T and T’ are defined to be shift equivalent, denoted T =g T’. Extending =g by
transitivity then yields an equivalence relation on ZT foreveryn > 1.



An arena for static analysis: “pathways” in rewriting systems

* Let Z = {R; € Lin(C)};es a (finite) set of rules with conditions over C, which
model the transitions of a rewriting system.

» We designate arule E € m(C) as modeling a “target event”, i.e. E must be the
last rule applied in the derivation traces we will study.

» Let moreover = be an equivalence relation on derivation traces such as abstrac-
tion or shift equivalences, or combinations thereof.
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* Let Z = {R; € Lin(C)};es a (finite) set of rules with conditions over C, which
model the transitions of a rewriting system.

» We designate arule E € m(C) as modeling a “target event”, i.e. E must be the
last rule applied in the derivation traces we will study.

» Let moreover = be an equivalence relation on derivation traces such as abstrac-
tion or shift equivalences, or combinations thereof.

“Pathway generation” or “explanatory synthesis” problem

For the type-T rewriting system based upon the set of rules %, synthesize the
maximally compressed derivation traces ending in an application of E such
that “E cannot occur at an earlier position in a given trace”. Here, compression
refers to retaining only the smallest traces in a given =¢ equivalence class,
while the last part of the statement needs to be made precise in a specific
application (as it depends on the chosen framework).




Feature-driven Explanatory Traclet Analysis (FETA)

* = — conjunction of tracelet abstraction and shift equivalences =4 and =g
For T = tglty|... |t € ,ZIH (with #¢ containing the rule E, [[T(g)]] = E), let

E < T denote the following property: there exist no tracelets 7’ € ZIH

tEltn].. [t =c |t |1y with [[T(,)]] = Eforanindexk <n+1.

= set of strongly compressed pathways := set of such tracelets modulo =¢



Feature-driven Explanatory Traclet Analysis (FETA)

* = — conjunction of tracelet abstraction and shift equivalences =4 and =g

For T = tglty|... |t € ,ZIH (with #¢ containing the rule E, [[T(g)]] = E), let
E < T denote the following property: there exist no tracelets 7’ € ZIH

tEltn].. [t =c |t |1y with [[T(,)]] = Eforanindexk <n+1.

= set of strongly compressed pathways := set of such tracelets modulo =¢

Algorithm 1: Feature-driven Explanatory Tracelet Analysis (FETA)

Data: Np,q, > 2 < maximal length of tracelets to be generated
Tg :=T(E) <+ tracelet of length 1 associated to the rule £
T1:={T(Rj) | j € J} < set of tracelets of length 1 associated to the transitions
Result: sets P; (i =2,..., Nypqz) of strongly compressed pathways
begin
P, :={Tg} <+ the only pathway of length 1;
for 2 < n < Npar do
pre, i= {PW1T|PeP, 1,T €T, pe MTL(T)};
Pn:={T" €pre,|E<c T}/ =¢;
end
end




Prototypical example: a rewriting system in FinGraph
Let C = FinGraph be the category of finite directed multigraphs. Let Z = {r} be a

one-element transition set (for a rule r € Lin(FinGraph) without conditions), and let
e1,ey € Lin(FinGraph) be two rules modeling alternative target events:

~tpoasll e
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If we consider DPO-type rewriting, the FETA algorithm produces the following strongly
compressed pathways for target event ¢; and n > 2 (with light blue arrows indicating
the relative overlap structure within the tracelets):

P, ={S.}, Sp =tplt]... |t = }
N——

(n — 1) times

(n — 1) times
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P, ={S.}, Sp =tplt]... |t = }
N——

(n — 1) times

(n — 1) times

For the target event ¢, the algorithm detects
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(a) Tracelets as (minimal) derivation traces.
(b) Tracelet generation (Definition 2.1).

1
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(d) Tracelet analysis (Section 3).
(c) Tracelet composition (Definition 2.2).

Figure 2 Schematic overview of the tracelet and tracelet analysis framework.
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Thank you!
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